Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Environ Sci Technol. 2017 Apr 18;51(8):4642-4651. doi: 10.1021/acs.est.6b06400. Epub 2017 Apr 7.
The bacterial uptake of mercury(II), Hg(II), is believed to be energy-dependent and is enhanced by cysteine in diverse species of bacteria under aerobic and anaerobic conditions. To gain insight into this Hg(II) biouptake pathway, we have employed X-ray absorption spectroscopy (XAS) to investigate the relationship between exogenous cysteine, cellular metabolism, cellular localization, and Hg(II) coordination in aerobically respiring Escherichia coli (E. coli). We show that cells harvested in exponential growth phase consistently display mixtures of 2-fold and 4-fold Hg(II) coordination to sulfur (Hg-S and Hg-S), with added cysteine enhancing Hg-S formation. In contrast, cells in stationary growth phase or cells treated with a protonophore causing a decrease in cellular ATP predominantly contain Hg-S, regardless of cysteine addition. Our XAS results favor metacinnabar (β-HgS) as the Hg-S species, which we show is associated with both the cell envelope and cytoplasm. Additionally, we observe that added cysteine abiotically oxidizes to cystine and exponentially growing E. coli degrade high cysteine concentrations (100-1000 μM) into sulfide. Thermodynamic calculations confirm that cysteine-induced sulfide biosynthesis can promote the formation of dissolved and particulate Hg(II)-sulfide species. This report reveals new complexities arising in Hg(II) bioassays with cysteine and emphasizes the need for considering changes in chemical speciation as well as growth stage.
细菌对汞(II)(Hg(II))的摄取被认为是依赖能量的,并且在有氧和无氧条件下,各种细菌中的半胱氨酸会增强这种摄取。为了深入了解这种 Hg(II) 生物摄取途径,我们采用 X 射线吸收光谱 (XAS) 技术研究了外源性半胱氨酸、细胞代谢、细胞定位以及有氧呼吸大肠杆菌 (E. coli) 中 Hg(II) 配位之间的关系。我们发现,处于指数生长期的细胞中始终存在 2 配位和 4 配位硫(Hg-S 和 Hg-S)的混合物,并且添加半胱氨酸可增强 Hg-S 的形成。相比之下,处于静止生长期的细胞或用质子载体处理导致细胞 ATP 减少的细胞主要含有 Hg-S,无论是否添加半胱氨酸。我们的 XAS 结果表明 Hg-S 物种为辰砂(β-HgS),其与细胞包膜和细胞质都有关联。此外,我们还观察到添加的半胱氨酸会非生物氧化为胱氨酸,并且指数生长期的大肠杆菌会将高浓度的半胱氨酸(100-1000 μM)降解为硫化物。热力学计算证实,半胱氨酸诱导的硫化物生物合成可以促进溶解态和颗粒态 Hg(II)-硫化物物种的形成。本报告揭示了在含有半胱氨酸的 Hg(II)生物测定中出现的新复杂性,并强调了需要考虑化学形态变化以及生长阶段。