Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0356 , United States.
J Am Chem Soc. 2019 Jun 26;141(25):10091-10098. doi: 10.1021/jacs.9b04555. Epub 2019 Jun 13.
Molybdenum nitrogenase catalyzes the reduction of dinitrogen into ammonia, which requires the coordinated transfer of eight electrons to the active site cofactor (FeMoco) through the intermediacy of an [8Fe-7S] cluster (P-cluster), both housed in the molybdenum-iron protein (MoFeP). Previous studies on MoFeP from two different organisms, Azotobacter vinelandii ( Av) and Gluconacetobacter diazotrophicus ( Gd), have established that the P-cluster is conformationally flexible and can undergo substantial structural changes upon two-electron oxidation to the P state, whereby a backbone amidate and an oxygenic residue (Ser or Tyr) ligate to two of the cluster's Fe centers. This redox-dependent change in coordination has been implicated in the conformationally gated electron transfer in nitrogenase. Here, we have investigated the role of the oxygenic ligand in Av MoFeP, which natively contains a Ser ligand (βSer188) to the P-cluster. Three variants were generated in which (1) the oxygenic ligand was eliminated (βSer188Ala), (2) the P-cluster environment was converted to the one in Gd MoFeP (βPhe99Tyr/βSer188Ala), and (3) two oxygenic ligands were simultaneously included (βPhe99Tyr). Our studies have revealed that the P-cluster can become compositionally labile upon oxidation and reversibly lose one or two Fe centers in the absence of the oxygenic ligand, while still retaining wild-type-like dinitrogen reduction activity. Our findings also suggest that Av and Gd MoFePs evolved with specific preferences for Ser and Tyr ligands, respectively, and that the structural control of these ligands must extend beyond the primary and secondary coordination spheres of the P-cluster. The P-cluster adds to the increasing number of examples of inherently labile Fe-S clusters whose compositional instability may be an obligatory feature to enable redox-linked conformational changes to facilitate multielectron redox reactions.
钼氮酶催化将氮气还原为氨,这需要通过[8Fe-7S]簇(P 簇)的中介作用,将八个电子协同转移到活性位点辅因子(FeMoco),该簇位于钼铁蛋白(MoFeP)中。来自两种不同生物体的 MoFeP(固氮菌和醋酸杆菌)的先前研究已经确定,P 簇具有构象灵活性,并且可以在两电子氧化为 P 态时发生大量结构变化,其中酰胺基和含氧残基(Ser 或 Tyr)连接到簇的两个 Fe 中心。这种氧化还原依赖性的配位变化与氮酶中构象门控电子转移有关。在这里,我们研究了固氮菌 MoFeP 中含氧配体的作用,其天然含有 P 簇的 Ser 配体(βSer188)。生成了三种变体,其中(1)消除了含氧配体(βSer188Ala),(2)将 P 簇环境转换为醋酸杆菌 MoFeP 的环境(βPhe99Tyr/βSer188Ala),和(3)同时包含两个含氧配体(βPhe99Tyr)。我们的研究表明,P 簇在氧化时可以变得组成不稳定,并且在没有含氧配体的情况下,可可逆地失去一个或两个 Fe 中心,同时仍然保持类似野生型的二氮还原活性。我们的发现还表明,固氮菌和醋酸杆菌 MoFeP 分别进化出对 Ser 和 Tyr 配体的特定偏好,并且这些配体的结构控制必须扩展到 P 簇的一级和二级配位球之外。P 簇增加了越来越多的固有不稳定 Fe-S 簇的例子,其组成不稳定性可能是使氧化还原相关构象变化能够促进多电子氧化还原反应的必需特征。