Suppr超能文献

关键计算分析揭示了固氮酶还原消除机制,用于 N 还原。

Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N reduction.

机构信息

Physical and Computational Sciences Directorate, Pacific Northwestern National Laboratory, Richland, WA 99352;

Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322;

出版信息

Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10521-E10530. doi: 10.1073/pnas.1810211115. Epub 2018 Oct 24.

Abstract

Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N → 2NH reduction involves the reductive elimination () of H from two [Fe-H-Fe] bridging hydrides bound to the catalytic [7Fe-9S-Mo-C-homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe-Thorneley kinetic scheme's proposal of mechanistically obligatory formation of one H for each N reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. () This shows that to prevent spurious disruption of FeMo-co having accumulated 4[/H] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. () These calculations indicate an important role of sulfide hemilability in the overall conversion of to a diazene-level intermediate. () Perhaps most importantly, they explain () how the enzyme mechanistically couples exothermic H formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutral /oxidative-addition equilibrium, () while preventing the "futile" generation of two H without N reduction: hydride generates an H complex, but H is only lost when displaced by N, to form an end-on N complex that proceeds to a diazene-level intermediate.

摘要

最近的光谱学、动力学、光物理和热力学测量表明,固氮酶对 N → 2NH 还原的激活涉及两个[Fe-H-Fe]桥接氢化物的还原消除(),这两个氢化物与催化[7Fe-9S-Mo-C-同型柠檬酸]FeMo 辅因子(FeMo-co)结合。这些研究合理地解释了 Lowe-Thorneley 动力学方案提出的每还原一个 N 就必须形成一个 H 的机制。它们还为理解固氮酶固氮的机制提供了一个总体框架。然而,它们直接提出了这里通过计算解决的基本问题。我们在这里报告了使用活性位点的结构模型对可能的固氮酶中间体的结构和能量进行的广泛计算研究,该模型的复杂性范围很广,同时评估了多种密度泛函理论风味。()这表明,为了防止积累了 4[/H]的 FeMo-co 被错误地破坏,有必要包括:通过特定氢键相互作用与 FeMo-co 直接相互作用的所有残基(和水分子);非特异性局部静电相互作用;和空间位阻。()这些计算表明,硫代半配位在将转化为 Diazene 水平中间体的整体转化中起着重要作用。()也许最重要的是,它们解释了()酶如何在几乎热中性的/氧化加成平衡中机械地将放热的 H 形成与吸热的 N≡N 三键的裂解耦合,()同时防止在没有 N 还原的情况下产生两个 H 的“徒劳”:氢化物生成 H 配合物,但只有当被 N 取代时才会失去 H,形成一个端到端的 N 配合物,然后继续形成 Diazene 水平中间体。

相似文献

3
Nitrogenase: a draft mechanism.固氮酶:一个草案机制。
Acc Chem Res. 2013 Feb 19;46(2):587-95. doi: 10.1021/ar300267m. Epub 2013 Jan 4.
7
On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.在氮气与固氮酶中铁钼辅因子结合时发生可逆的 H2 损失。
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32. doi: 10.1073/pnas.1315852110. Epub 2013 Sep 23.

引用本文的文献

2
What Can be Learned From the Electrostatic Environments Within Nitrogenase Enzymes?从固氮酶中的静电环境能学到什么?
Chemistry. 2025 Jul 17;31(40):e202501616. doi: 10.1002/chem.202501616. Epub 2025 Jun 27.
3
Synthetic models of the nitrogenase FeMo cofactor.固氮酶铁钼辅因子的合成模型
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2419655122. doi: 10.1073/pnas.2419655122. Epub 2025 Jun 12.
7
Conformational protection of molybdenum nitrogenase by Shethna protein II.舍特那蛋白II对钼固氮酶的构象保护作用
Nature. 2025 Jan;637(8047):998-1004. doi: 10.1038/s41586-024-08355-3. Epub 2025 Jan 8.
9
Terminal Hydride Complex of High-Spin Mn.高自旋锰的端基氢化物配合物
J Am Chem Soc. 2024 Jul 10;146(27):18370-18378. doi: 10.1021/jacs.4c03310. Epub 2024 Jun 28.
10
Evaluating Diazene to N Interconversion at Iron-Sulfur Complexes.评估铁硫配合物中二氮烯与氮的相互转化
Chemistry. 2024 Apr 25;30(24):e202304072. doi: 10.1002/chem.202304072. Epub 2024 Mar 26.

本文引用的文献

1
Strong Electron Correlation in Nitrogenase Cofactor, FeMoco.固氮酶辅因子FeMoco中的强电子关联
J Phys Chem A. 2018 Jun 7;122(22):4988-4996. doi: 10.1021/acs.jpca.8b00941. Epub 2018 May 17.
9
High-Level Spectroscopy, Quantum Chemistry, and Catalysis: Not just a Passing Fad.高级光谱学、量子化学与催化:不只是一时风尚。
Angew Chem Int Ed Engl. 2017 Sep 4;56(37):11003-11010. doi: 10.1002/anie.201701163. Epub 2017 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验