Physical and Computational Sciences Directorate, Pacific Northwestern National Laboratory, Richland, WA 99352;
Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322;
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10521-E10530. doi: 10.1073/pnas.1810211115. Epub 2018 Oct 24.
Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N → 2NH reduction involves the reductive elimination () of H from two [Fe-H-Fe] bridging hydrides bound to the catalytic [7Fe-9S-Mo-C-homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe-Thorneley kinetic scheme's proposal of mechanistically obligatory formation of one H for each N reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. () This shows that to prevent spurious disruption of FeMo-co having accumulated 4[/H] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. () These calculations indicate an important role of sulfide hemilability in the overall conversion of to a diazene-level intermediate. () Perhaps most importantly, they explain () how the enzyme mechanistically couples exothermic H formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutral /oxidative-addition equilibrium, () while preventing the "futile" generation of two H without N reduction: hydride generates an H complex, but H is only lost when displaced by N, to form an end-on N complex that proceeds to a diazene-level intermediate.
最近的光谱学、动力学、光物理和热力学测量表明,固氮酶对 N → 2NH 还原的激活涉及两个[Fe-H-Fe]桥接氢化物的还原消除(),这两个氢化物与催化[7Fe-9S-Mo-C-同型柠檬酸]FeMo 辅因子(FeMo-co)结合。这些研究合理地解释了 Lowe-Thorneley 动力学方案提出的每还原一个 N 就必须形成一个 H 的机制。它们还为理解固氮酶固氮的机制提供了一个总体框架。然而,它们直接提出了这里通过计算解决的基本问题。我们在这里报告了使用活性位点的结构模型对可能的固氮酶中间体的结构和能量进行的广泛计算研究,该模型的复杂性范围很广,同时评估了多种密度泛函理论风味。()这表明,为了防止积累了 4[/H]的 FeMo-co 被错误地破坏,有必要包括:通过特定氢键相互作用与 FeMo-co 直接相互作用的所有残基(和水分子);非特异性局部静电相互作用;和空间位阻。()这些计算表明,硫代半配位在将转化为 Diazene 水平中间体的整体转化中起着重要作用。()也许最重要的是,它们解释了()酶如何在几乎热中性的/氧化加成平衡中机械地将放热的 H 形成与吸热的 N≡N 三键的裂解耦合,()同时防止在没有 N 还原的情况下产生两个 H 的“徒劳”:氢化物生成 H 配合物,但只有当被 N 取代时才会失去 H,形成一个端到端的 N 配合物,然后继续形成 Diazene 水平中间体。