Suppr超能文献

运用无模型多智能体强化学习掌握 Stratego 游戏。

Mastering the game of Stratego with model-free multiagent reinforcement learning.

机构信息

DeepMind Technologies Ltd., London, UK.

出版信息

Science. 2022 Dec 2;378(6623):990-996. doi: 10.1126/science.add4679. Epub 2022 Dec 1.

Abstract

We introduce DeepNash, an autonomous agent that plays the imperfect information game Stratego at a human expert level. Stratego is one of the few iconic board games that artificial intelligence (AI) has not yet mastered. It is a game characterized by a twin challenge: It requires long-term strategic thinking as in chess, but it also requires dealing with imperfect information as in poker. The technique underpinning DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego through self-play from scratch. DeepNash beat existing state-of-the-art AI methods in Stratego and achieved a year-to-date (2022) and all-time top-three ranking on the Gravon games platform, competing with human expert players.

摘要

我们介绍 DeepNash,这是一个能够达到人类专家水平的自主代理,能够玩信息不完全的 Stratego 游戏。Stratego 是人工智能(AI)尚未掌握的少数标志性棋盘游戏之一。这是一种具有双重挑战的游戏:它需要像国际象棋一样的长期战略思维,但也需要像扑克一样处理信息不完全的情况。DeepNash 所使用的技术是一种基于博弈论的、无搜索的深度强化学习方法,通过自我博弈从零开始学习掌握 Stratego。DeepNash 在 Stratego 中击败了现有的最先进的 AI 方法,并在 Gravon 游戏平台上获得了截至 2022 年的年度和历史排名前三的成绩,与人类专家玩家竞争。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验