Suppr超能文献

MetaSeeker:通过自我博弈强化学习勾勒一个开放的无形空间。

MetaSeeker: sketching an open invisible space with self-play reinforcement learning.

作者信息

Wu Bei, Qian Chao, Wang Zhedong, Lin Pujing, Li Erping, Chen Hongsheng

机构信息

ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China.

ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang Key Laboratory of Intelligent Electromagnetic Control and Advanced Electronic Integration, Hangzhou, China.

出版信息

Light Sci Appl. 2025 Jun 4;14(1):211. doi: 10.1038/s41377-025-01876-0.

Abstract

Controlling electromagnetic (EM) waves at will is fundamentally important for diverse applications, ranging from optical microcavities, super-resolution imaging, to quantum information processing. Decades ago, the forays into metamaterials and transformation optics have ignited unprecedented interest to create an invisibility cloak-a closed space with any object inside invisible. However, all features of the scattering waves become stochastic and uncontrollable when EM waves interact with an open and disordered environment, making an open invisible space almost impossible. Counterintuitively, here we for the first time present an open, cluttered, and dynamic but invisible space, wherein any freely-moving object maintains invisible. To adapt to the disordered environment, we randomly organize a swarm of reconfigurable metasurfaces, and master them by MetaSeeker, a population-based reinforcement learning (RL). MetaSeeker constructs a narcissistic internal world to mirror the stochastic physical world, capable of autonomous preferment, evolution, and adaptation. In the perception-decision-execution experiment, multiple RL agents automatically interact with the ever-changing environments and integrate a post-hoc explainability to visualize the decision-making process. The hidden objects, such as vehicle cluster and experimenter, can freely scale, race, and track in the invisible space, with the environmental similarity of 99.5%. Our results constitute a monumental stride to reshape the evolutionary landscape of metasurfaces from individual to swarm intelligence and usher in the remote management of entire EM space.

摘要

随意控制电磁波对于从光学微腔、超分辨率成像到量子信息处理等各种应用至关重要。几十年前,对超材料和变换光学的探索引发了前所未有的兴趣,旨在创造一种隐形斗篷——一个内部有任何物体都不可见的封闭空间。然而,当电磁波与开放且无序的环境相互作用时,散射波的所有特征都会变得随机且无法控制,使得创造一个开放的隐形空间几乎不可能。与直觉相反,我们首次展示了一个开放、杂乱且动态但隐形的空间,其中任何自由移动的物体都能保持隐形。为了适应无序环境,我们随机组织一群可重构的超表面,并通过基于群体的强化学习(RL)算法MetaSeeker对它们进行控制。MetaSeeker构建了一个自恋的内部世界来反映随机的物理世界,能够自主优化、进化和适应。在感知 - 决策 - 执行实验中,多个RL智能体自动与不断变化的环境相互作用,并集成事后可解释性以可视化决策过程。隐藏的物体,如车辆集群和实验者,能够在隐形空间中自由缩放、竞赛和追踪,环境相似度达99.5%。我们的研究结果是在将超表面从个体智能重塑为群体智能以及开启整个电磁空间远程管理方面迈出的巨大一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fdd/12137603/90b146e4b570/41377_2025_1876_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验