Suppr超能文献

用于校正软组织温度测量中粘性加热伪像的超声加热数值模拟。

Numerical modeling of ultrasound heating for the correction of viscous heating artifacts in soft tissue temperature measurements.

作者信息

Tiennot Thomas, Kamimura Hermes A S, Lee Stephen A, Aurup Christian, Konofagou Elisa E

机构信息

Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA.

出版信息

Appl Phys Lett. 2019 May 20;114(20):203702. doi: 10.1063/1.5091108. Epub 2019 May 21.

Abstract

Measuring temperature during focused ultrasound (FUS) procedures is critical for characterization, calibration, and monitoring to ultimately ensure safety and efficacy. Despite the low cost and the high spatial and temporal resolutions of temperature measurements using thermocouples, the viscous heating (VH) artifact at the thermocouple-tissue interface requires reading corrections for correct thermometric analysis. In this study, a simulation pipeline is proposed to correct the VH artifact arising from temperature measurements using thermocouples in FUS fields. The numerical model consists of simulating a primary source of heating due to ultrasound absorption and a secondary source of heating from viscous forces generated by the thermocouple in the FUS field. Our numerical validation found that up to 90% of the measured temperature rise was due to VH effects. Experimental temperature measurements were performed using thermocouples embedded in fresh chicken breast samples. Temperature corrections were demonstrated for single high-intensity FUS pulses at 3.1 MHz and for multiple pulses (3.1 MHz, 100 Hz, and 500 Hz pulse repetition frequency). The VH accumulated during sonications and produced a temperature increase of 3.1 °C and 15.3 °C for the single and multiple pulse sequences, respectively. The methodology presented here enables the decoupling of the temperature increase generated by absorption and VH. Thus, more reliable temperature measurements can be extracted from thermocouple measurements by correcting for VH.

摘要

在聚焦超声(FUS)手术过程中测量温度对于特征描述、校准和监测至关重要,最终目的是确保安全性和有效性。尽管使用热电偶进行温度测量成本低且具有高空间和时间分辨率,但热电偶与组织界面处的粘性加热(VH)伪像需要进行读数校正才能进行正确的温度分析。在本研究中,提出了一种模拟管道来校正FUS场中使用热电偶进行温度测量时产生的VH伪像。数值模型包括模拟由于超声吸收产生的主要加热源以及FUS场中热电偶产生的粘性力引起的次要加热源。我们的数值验证发现,高达90%的测量温度升高是由VH效应引起的。使用嵌入新鲜鸡胸肉样本中的热电偶进行了实验温度测量。对3.1MHz的单个高强度FUS脉冲以及多个脉冲(3.1MHz、100Hz和500Hz脉冲重复频率)进行了温度校正。超声处理期间VH累积,单个和多个脉冲序列分别产生了3.1°C和15.3°C的温度升高。这里介绍的方法能够将吸收和VH产生的温度升高解耦。因此,通过校正VH,可以从热电偶测量中提取更可靠的温度测量值。

相似文献

1
2
Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field.
Phys Med Biol. 2008 Sep 7;53(17):4759-76. doi: 10.1088/0031-9155/53/17/020. Epub 2008 Aug 13.
3
Beam localization in HIFU temperature measurements using thermocouples, with application to cooling by large blood vessels.
Ultrasonics. 2011 Feb;51(2):171-80. doi: 10.1016/j.ultras.2010.07.007. Epub 2010 Aug 13.
4
Iterative Curve Fitting of the Bioheat Transfer Equation for Thermocouple-Based Temperature Estimation In Vitro and In Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jan;67(1):70-80. doi: 10.1109/TUFFC.2019.2940375. Epub 2019 Sep 11.
5
Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Dec;61(12):2019-31. doi: 10.1109/TUFFC.2014.006702.
6
Artefacts in intracavitary temperature measurements during regional hyperthermia.
Phys Med Biol. 2007 Sep 7;52(17):5157-71. doi: 10.1088/0031-9155/52/17/004. Epub 2007 Aug 7.

引用本文的文献

1
Millisecond-level transient heating and temperature monitoring technique for ultrasound-induced thermal strain imaging.
Theranostics. 2025 Jan 1;15(3):815-827. doi: 10.7150/thno.95997. eCollection 2025.
2
Cobalt-doped ZnO nanoparticles and PLD-deposited thin film forms: structure, optical properties and nature of magnetic anisotropy.
RSC Adv. 2024 Aug 30;14(38):27622-27633. doi: 10.1039/d4ra05021e. eCollection 2024 Aug 29.
5
Real-Time Reconstruction of HIFU Focal Temperature Field Based on Deep Learning.
BME Front. 2024 Mar 21;5:0037. doi: 10.34133/bmef.0037. eCollection 2024.
6
Synchronous temperature variation monitoring during ultrasound imaging and/or treatment pulse application: a phantom study.
IEEE Open J Ultrason Ferroelectr Freq Control. 2021;1:1-10. doi: 10.1109/ojuffc.2021.3085539. Epub 2021 Jun 3.
7
Displacement Imaging for Focused Ultrasound Peripheral Nerve Neuromodulation.
IEEE Trans Med Imaging. 2020 Nov;39(11):3391-3402. doi: 10.1109/TMI.2020.2992498. Epub 2020 Oct 28.
9
Iterative Curve Fitting of the Bioheat Transfer Equation for Thermocouple-Based Temperature Estimation In Vitro and In Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jan;67(1):70-80. doi: 10.1109/TUFFC.2019.2940375. Epub 2019 Sep 11.

本文引用的文献

3
The Comparing Options for Management: PAtient-centered REsults for Uterine Fibroids (COMPARE-UF) registry: rationale and design.
Am J Obstet Gynecol. 2018 Jul;219(1):95.e1-95.e10. doi: 10.1016/j.ajog.2018.05.004. Epub 2018 May 8.
4
New technologies and techniques for prostate cancer focal therapy.
Minerva Urol Nefrol. 2018 Jun;70(3):252-263. doi: 10.23736/S0393-2249.18.03094-1. Epub 2018 Apr 16.
5
High-intensity focused ultrasound therapy for the treatment of prostate cancer: Medium-term experience.
Actas Urol Esp (Engl Ed). 2018 Sep;42(7):450-456. doi: 10.1016/j.acuro.2017.11.007. Epub 2018 Mar 21.
6
Magnetic resonance-guided interstitial high-intensity focused ultrasound for brain tumor ablation.
Neurosurg Focus. 2018 Feb;44(2):E11. doi: 10.3171/2017.11.FOCUS17613.
7
Comparative Evaluation of Magnetic Resonance-Guided Focused Ultrasound Surgery for Essential Tremor.
Stereotact Funct Neurosurg. 2017;95(4):279-286. doi: 10.1159/000478866. Epub 2017 Aug 16.
9
Enhancing tissue permeability with MRI guided preclinical focused ultrasound system in rabbit muscle: From normal tissue to VX2 tumor.
J Control Release. 2017 Jun 28;256:1-8. doi: 10.1016/j.jconrel.2017.04.017. Epub 2017 Apr 12.
10
Minimally invasive ablative techniques in the treatment of breast cancer: a systematic review and meta-analysis.
Int J Hyperthermia. 2017 Mar;33(2):191-202. doi: 10.1080/02656736.2016.1230232. Epub 2016 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验