Williams Matthew J, Lee Nicholas K, Mylott Joseph A, Mazzola Nicole, Ahmed Adeel, Abhyankar Vinay V
Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
Micromachines (Basel). 2019 May 30;10(6):360. doi: 10.3390/mi10060360.
Microfluidic platforms use controlled fluid flows to provide physiologically relevant biochemical and biophysical cues to cultured cells in a well-defined and reproducible manner. Undisturbed flows are critical in these systems, and air bubbles entering microfluidic channels can lead to device delamination or cell damage. To prevent bubble entry into microfluidic channels, we report a low-cost, Rapidly Integrated Debubbler (RID) module that is simple to fabricate, inexpensive, and easily combined with existing experimental systems. We demonstrate successful removal of air bubbles spanning three orders of magnitude with a maximum removal rate (dV/dt) = 1.5 mL min, at flow rates required to apply physiological wall shear stress (1-200 dyne cm) to mammalian cells cultured in microfluidic channels.
微流控平台利用受控的流体流动,以明确且可重复的方式为培养的细胞提供与生理相关的生化和生物物理信号。在这些系统中,无扰动的流动至关重要,而进入微流控通道的气泡会导致器件分层或细胞损伤。为防止气泡进入微流控通道,我们报告了一种低成本的快速集成除泡器(RID)模块,该模块易于制造、成本低廉且易于与现有的实验系统相结合。我们证明,在向微流控通道中培养的哺乳动物细胞施加生理壁面剪应力(1 - 200达因/厘米)所需的流速下,能够成功去除跨度达三个数量级的气泡,最大去除率(dV/dt)= 1.5毫升/分钟。