Suppr超能文献

将静态屏障组织模型转化为动态微生理系统。

Transforming Static Barrier Tissue Models into Dynamic Microphysiological Systems.

机构信息

Department of Biomedical Engineering, Rochester Institute of Technology.

Department of Biomedical Engineering, University of Rochester.

出版信息

J Vis Exp. 2024 Feb 16(204). doi: 10.3791/66090.

Abstract

Microphysiological systems are miniaturized cell culture platforms used to mimic the structure and function of human tissues in a laboratory setting. However, these platforms have not gained widespread adoption in bioscience laboratories where open-well, membrane-based approaches serve as the gold standard for mimicking tissue barriers, despite lacking fluid flow capabilities. This issue can be primarily attributed to the incompatibility of existing microphysiological systems with standard protocols and tools developed for open-well systems. Here, we present a protocol for creating a reconfigurable membrane-based platform with an open-well structure, flow enhancement capability, and compatibility with conventional protocols. This system utilizes a magnetic assembly approach that enables reversible switching between open-well and microfluidic modes. With this approach, users have the flexibility to begin an experiment in the open-well format using standard protocols and add or remove flow capabilities as needed. To demonstrate the practical usage of this system and its compatibility with standard techniques, an endothelial cell monolayer was established in an open-well format. The system was reconfigured to introduce fluid flow and then switched to the open-well format to conduct immunostaining and RNA extraction. Due to its compatibility with conventional open-well protocols and flow enhancement capability, this reconfigurable design is expected to be adopted by both engineering and bioscience laboratories.

摘要

微生理系统是用于在实验室中模拟人体组织结构和功能的小型化细胞培养平台。然而,这些平台并未在生物科学实验室中得到广泛采用,尽管开放孔、基于膜的方法缺乏流体流动能力,但它们仍是模拟组织屏障的金标准。这个问题主要归因于现有的微生理系统与为开放孔系统开发的标准协议和工具不兼容。在这里,我们提出了一种创建具有开放孔结构、增强流动能力和与传统协议兼容性的可重构基于膜的平台的方案。该系统利用磁组装方法实现了在开放孔和微流控模式之间的可逆切换。通过这种方法,用户可以使用标准协议在开放孔格式下开始实验,并根据需要添加或移除流动能力。为了展示该系统的实际用途及其与标准技术的兼容性,我们在开放孔格式下建立了内皮细胞单层。然后对系统进行重新配置以引入流体流动,然后切换回开放孔格式以进行免疫染色和 RNA 提取。由于其与传统开放孔协议的兼容性和增强流动能力,这种可重构设计预计将被工程和生物科学实验室采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e170/11096840/9424efdf10f8/nihms-1987131-f0001.jpg

相似文献

8
Pumped and pumpless microphysiological systems to study (nano)therapeutics.用于研究(纳米)治疗药物的有泵和无泵微生理系统。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Sep-Oct;15(5):e1911. doi: 10.1002/wnan.1911. Epub 2023 Jul 18.

本文引用的文献

2
Experimental Models to Study the Functions of the Blood-Brain Barrier.用于研究血脑屏障功能的实验模型
Bioengineering (Basel). 2023 Apr 25;10(5):519. doi: 10.3390/bioengineering10050519.
9
A role for microfluidic systems in precision medicine.微流控系统在精准医学中的作用。
Nat Commun. 2022 Jun 2;13(1):3086. doi: 10.1038/s41467-022-30384-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验