Department of Neurobiology and Developmental Sciences.
Department of Neurobiology and Developmental Sciences,; Center for Translational Neuroscience.
J Biol Chem. 2019 Jul 12;294(28):10969-10986. doi: 10.1074/jbc.RA119.007220. Epub 2019 May 31.
The Musashi family of mRNA translational regulators controls both physiological and pathological stem cell self-renewal primarily by repressing target mRNAs that promote differentiation. In response to differentiation cues, Musashi can switch from a repressor to an activator of target mRNA translation. However, the molecular events that distinguish Musashi-mediated translational activation from repression are not understood. We have previously reported that Musashi function is required for the maturation of oocytes and specifically for translational activation of specific dormant maternal mRNAs. Here, we employed MS to identify cellular factors necessary for Musashi-dependent mRNA translational activation. We report that Musashi1 needs to associate with the embryonic poly(A)-binding protein (ePABP) or the canonical somatic cell poly(A)-binding protein PABPC1 for activation of Musashi target mRNA translation. Co-immunoprecipitation studies demonstrated an increased Musashi1 interaction with ePABP during oocyte maturation. Attenuation of endogenous ePABP activity severely compromised Musashi function, preventing downstream signaling and blocking oocyte maturation. Ectopic expression of either ePABP or PABPC1 restored Musashi-dependent mRNA translational activation and maturation of ePABP-attenuated oocytes. Consistent with these findings, PABPC1 remained associated with Musashi under conditions of Musashi target mRNA de-repression and translation during mammalian stem cell differentiation. Because association of Musashi1 with poly(A)-binding proteins has previously been implicated only in repression of Musashi target mRNAs, our findings reveal novel context-dependent roles for the interaction of Musashi with poly(A)-binding protein family members in response to extracellular cues that control cell fate.
肌卫星细胞家族的 mRNA 翻译调节因子主要通过抑制促进分化的靶 mRNA 来控制生理和病理干细胞自我更新。 响应分化信号,肌卫星细胞可以从靶 mRNA 翻译的抑制剂转换为激活剂。 然而,区分肌卫星细胞介导的翻译激活和抑制的分子事件尚不清楚。 我们之前报道过,肌卫星细胞功能对于卵母细胞的成熟是必需的,并且特别对于特定休眠母体 mRNA 的翻译激活是必需的。 在这里,我们采用 MS 来鉴定肌卫星细胞依赖性 mRNA 翻译激活所必需的细胞因子。 我们报告肌卫星细胞 1 需要与胚胎多聚(A)结合蛋白(ePABP)或典型的体细胞多聚(A)结合蛋白 PABPC1 结合才能激活肌卫星细胞靶 mRNA 的翻译。 共免疫沉淀研究表明,在卵母细胞成熟过程中,肌卫星细胞 1 与 ePABP 的相互作用增加。 内源性 ePABP 活性的衰减严重损害了肌卫星细胞的功能,阻止了下游信号转导并阻断了卵母细胞成熟。 内源性 ePABP 活性的衰减严重损害了肌卫星细胞的功能,阻止了下游信号转导并阻断了卵母细胞成熟。 内源性 ePABP 活性的衰减严重损害了肌卫星细胞的功能,阻止了下游信号转导并阻断了卵母细胞成熟。 异位表达 ePABP 或 PABPC1 恢复了 Musashi 依赖性 mRNA 翻译激活和 ePABP 减弱的卵母细胞成熟。 这些发现与以下发现一致,即在哺乳动物干细胞分化过程中,当 Musashi 靶 mRNA 去抑制和翻译时,PABPC1 仍然与 Musashi 相关。 由于肌卫星细胞 1 与多聚(A)结合蛋白的结合先前仅被牵连到肌卫星细胞靶 mRNA 的抑制中,因此我们的发现揭示了在控制细胞命运的细胞外信号响应中,肌卫星细胞与多聚(A)结合蛋白家族成员的相互作用的新的、依赖于上下文的作用。