Odle Angela K, Akhter Noor, Syed Mohsin M, Allensworth-James Melody L, Beneš Helen, Melgar Castillo Andrea I, MacNicol Melanie C, MacNicol Angus M, Childs Gwen V
Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
Front Endocrinol (Lausanne). 2018 Jan 5;8:367. doi: 10.3389/fendo.2017.00367. eCollection 2017.
The adipokine leptin signals the body's nutritional status to the brain, and particularly, the hypothalamus. However, leptin receptors (LEPRs) can be found all throughout the body and brain, including the pituitary. It is known that leptin is permissive for reproduction, and mice that cannot produce leptin (Lep/Lep) are infertile. Many studies have pinpointed leptin's regulation of reproduction to the hypothalamus. However, LEPRs exist at all levels of the hypothalamic-pituitary-gonadal axis. We have previously shown that deleting the signaling portion of the LEPR specifically in gonadotropes impairs fertility in female mice. Our recent studies have targeted this regulation to the control of gonadotropin releasing hormone receptor (GnRHR) expression. The hypotheses presented here are twofold: (1) cyclic regulation of pituitary GnRHR levels sets up a target metabolic checkpoint for control of the reproductive axis and (2) multiple checkpoints are required for the metabolic signaling that regulates the reproductive axis. Here, we emphasize and explore the relationship between the hypothalamus and the pituitary with regard to the regulation of GnRHR. The original data we present strengthen these hypotheses and build on our previous studies. We show that we can cause infertility in 70% of female mice by deleting all isoforms of LEPR specifically in gonadotropes. Our findings implicate activin subunit (InhBa) mRNA as a potential leptin target in gonadotropes. We further show gonadotrope-specific upregulation of GnRHR protein (but not mRNA levels) following leptin stimulation. In order to try and understand this post-transcriptional regulation, we tested candidate miRNAs (identified with analysis) that may be binding the mRNA. We show significant upregulation of one of these miRNAs in our gonadotrope-Lepr-null females. The evidence provided here, combined with our previous work, lay the foundation for metabolically regulated post-transcriptional control of the gonadotrope. We discuss possible mechanisms, including miRNA regulation and the involvement of the RNA binding protein, Musashi. We also demonstrate how this regulation may be vital for the dynamic remodeling of gonadotropes in the cycling female. Finally, we propose that the leptin receptivity of both the hypothalamus and the pituitary are vital for the body's ability to delay or slow reproduction during periods of low nutrition.
脂肪因子瘦素向大脑尤其是下丘脑传递身体的营养状况信号。然而,瘦素受体(LEPRs)在全身和大脑各处都能找到,包括垂体。已知瘦素对生殖具有允许作用,无法产生瘦素的小鼠(Lep/Lep)不育。许多研究已将瘦素对生殖的调节定位到下丘脑。然而,下丘脑 - 垂体 - 性腺轴的各个水平都存在LEPRs。我们之前已表明,特异性删除促性腺激素细胞中LEPR的信号部分会损害雌性小鼠的生育能力。我们最近的研究将这种调节靶向到促性腺激素释放激素受体(GnRHR)表达的控制上。这里提出的假说是双重的:(1)垂体GnRHR水平的周期性调节为生殖轴的控制建立了一个目标代谢检查点;(2)调节生殖轴的代谢信号需要多个检查点。在此,我们着重探讨下丘脑与垂体在GnRHR调节方面的关系。我们呈现的原始数据强化了这些假说,并基于我们之前的研究。我们表明,通过特异性删除促性腺激素细胞中的所有LEPR异构体,可使70%的雌性小鼠不育。我们的研究结果表明激活素亚基(InhBa)mRNA是促性腺激素细胞中潜在的瘦素靶点。我们进一步表明,瘦素刺激后促性腺激素细胞中GnRHR蛋白(而非mRNA水平)特异性上调。为了试图理解这种转录后调节,我们测试了可能与GnRHR mRNA结合的候选微小RNA(通过分析鉴定)。我们发现在我们的促性腺激素细胞 - Lep缺失雌性小鼠中,其中一种微小RNA显著上调。这里提供的证据与我们之前的工作相结合,为促性腺激素细胞的代谢调节转录后控制奠定了基础。我们讨论了可能的机制,包括微小RNA调节和RNA结合蛋白Musashi的参与。我们还证明了这种调节对于周期性雌性中促性腺激素细胞的动态重塑可能至关重要。最后,我们提出下丘脑和垂体的瘦素敏感性对于身体在低营养时期延迟或减缓生殖的能力至关重要。