Suppr超能文献

负载于含磷碳织物上的氮化钼纳米晶体作为高性能不对称赝电容器的负极

Molybdenum Nitride Nanocrystals Anchored on Phosphorus-Incorporated Carbon Fabric as a Negative Electrode for High-Performance Asymmetric Pseudocapacitor.

作者信息

Dubal Deepak P, Abdel-Azeim Safwat, Chodankar Nilesh R, Han Young-Kyu

机构信息

School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia.

Center of Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.

出版信息

iScience. 2019 Jun 28;16:50-62. doi: 10.1016/j.isci.2019.05.018. Epub 2019 May 16.

Abstract

Pseudocapacitors hold great promise to provide high energy-storing capacity; however, their capacitances are still far below their theoretical values and they deliver much lower power than the traditional electric double-layer capacitors due to poor ionic accessibility. Here, we have engineered MoN nanoparticles as pseudocapacitive material on phosphorus-incorporated carbon fabric with enhanced ionic affinity and thermodynamic stability. This nanocomposite boosts surface redox kinetics, leading to pseudocapacitance of 400 mF/cm (2-fold higher than that of molybdenum nitride-based electrodes) with rapid charge-discharge rates. Density functional theory simulations are used to explain the origin of the good performance of MoN@P-CF in proton-based aqueous electrolytes. Finally, an all-pseudocapacitive solid-state asymmetric cell was assembled using MoN@P-CF and RuO (RuO@CF) as negative and positive electrodes, respectively, which delivered good energy density with low relaxation time constant (τ) of 13 ms (significantly lower than that of carbon-based supercapacitors).

摘要

赝电容器在提供高储能容量方面极具潜力;然而,由于离子可达性差,它们的电容仍远低于其理论值,且其功率输出比传统的双电层电容器低得多。在此,我们设计了在掺磷碳织物上的氮化钼纳米颗粒作为赝电容材料,具有增强的离子亲和力和热力学稳定性。这种纳米复合材料促进了表面氧化还原动力学,实现了400 mF/cm的赝电容(比基于氮化钼的电极高出2倍),且充放电速率很快。采用密度泛函理论模拟来解释氮化钼@磷-碳织物在质子基水性电解质中良好性能的起源。最后,组装了一个全赝电容固态非对称电池,分别使用氮化钼@磷-碳织物和RuO(RuO@CF)作为负极和正极,该电池具有良好的能量密度,低弛豫时间常数(τ)为13毫秒(显著低于基于碳的超级电容器)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1943/6543162/e944dfedfacc/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验