Suppr超能文献

基于心电图信号的充血性心力衰竭计算机辅助诊断——综述。

Computer-aided diagnosis of congestive heart failure using ECG signals - A review.

机构信息

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore.

出版信息

Phys Med. 2019 Jun;62:95-104. doi: 10.1016/j.ejmp.2019.05.004. Epub 2019 May 10.

Abstract

The heart muscle pumps blood to vital organs, which is indispensable for human life. Congestive heart failure (CHF) is characterized by the inability of the heart to pump blood adequately throughout the body without an increase in intracardiac pressure. The symptoms include lung and peripheral congestion, leading to breathing difficulty and swollen limbs, dizziness from reduced delivery of blood to the brain, as well as arrhythmia. Coronary artery disease, myocardial infarction, and medical co-morbidities such as kidney disease, diabetes, and high blood pressure all take a toll on the heart and can impair myocardial function. CHF prevalence is growing worldwide. It afflicts millions of people globally, and is a leading cause of death. Hence, proper diagnosis, monitoring and management are imperative. The importance of an objective CHF diagnostic tool cannot be overemphasized. Standard diagnostic tests for CHF include chest X-ray, magnetic resonance imaging (MRI), nuclear imaging, echocardiography, and invasive angiography. However, these methods are costly, time-consuming, and they can be operator-dependent. Electrocardiography (ECG) is inexpensive and widely accessible, but ECG changes are typically not specific for CHF diagnosis. A properly designed computer-aided detection (CAD) system for CHF, based on the ECG, would potentially reduce subjectivity and provide quantitative assessment for informed decision-making. Herein, we review existing CAD for automatic CHF diagnosis, and highlight the development of an ECG-based CAD diagnostic system that employs deep learning algorithms to automatically detect CHF.

摘要

心肌将血液泵至重要器官,这对人类生命是不可或缺的。充血性心力衰竭(CHF)的特征是心脏在不增加心内压的情况下无法将血液充分泵送到全身。症状包括肺部和外周充血,导致呼吸困难和四肢肿胀,由于向大脑输送的血液减少而导致头晕,以及心律失常。冠状动脉疾病、心肌梗死和肾脏疾病、糖尿病和高血压等医学合并症都会对心脏造成损害,并可能损害心肌功能。CHF 在全球的患病率正在上升。它影响着全球数百万人,是主要的死亡原因之一。因此,正确的诊断、监测和管理至关重要。客观的 CHF 诊断工具的重要性怎么强调都不为过。CHF 的标准诊断测试包括胸部 X 光、磁共振成像(MRI)、核成像、超声心动图和有创血管造影。然而,这些方法成本高、耗时且依赖于操作人员。心电图(ECG)价格低廉且广泛可用,但 ECG 变化通常特异性不强,无法用于 CHF 诊断。一个基于 ECG 的设计良好的 CHF 计算机辅助检测(CAD)系统,可能会减少主观性并为知情决策提供定量评估。本文综述了现有的用于自动 CHF 诊断的 CAD,并重点介绍了一种基于 ECG 的 CAD 诊断系统的开发,该系统采用深度学习算法自动检测 CHF。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验