Suppr超能文献

AKI 预测评分:肝移植后急性肾损伤的新预测模型。

The AKI Prediction Score: a new prediction model for acute kidney injury after liver transplantation.

机构信息

The Liver Unit, Queen Elizabeth University Hospital, Birmingham, United Kingdom; Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands.

The Liver Unit, Queen Elizabeth University Hospital, Birmingham, United Kingdom.

出版信息

HPB (Oxford). 2019 Dec;21(12):1707-1717. doi: 10.1016/j.hpb.2019.04.008. Epub 2019 May 29.

Abstract

BACKGROUND

Acute kidney injury (AKI) is a frequent complication after liver transplantation. Although numerous risk factors for AKI have been identified, their cumulative impact remains unclear. Our aim was therefore to design a new model to predict post-transplant AKI.

METHODS

Risk analysis was performed in patients undergoing liver transplantation in two centres (n = 1230). A model to predict severe AKI was calculated, based on weight of donor and recipient risk factors in a multivariable regression analysis according to the Framingham risk-scheme.

RESULTS

Overall, 34% developed severe AKI, including 18% requiring postoperative renal replacement therapy (RRT). Five factors were identified as strongest predictors: donor and recipient BMI, DCD grafts, FFP requirements, and recipient warm ischemia time, leading to a range of 0-25 score points with an AUC of 0.70. Three risk classes were identified: low, intermediate and high-risk. Severe AKI was less frequently observed if recipients with an intermediate or high-risk were treated with a renal-sparing immunosuppression regimen (29 vs. 45%; p = 0.007).

CONCLUSION

The AKI Prediction Score is a new instrument to identify recipients at risk for severe post-transplant AKI. This score is readily available at end of the transplant procedure, as a tool to timely decide on the use of kidney-sparing immunosuppression and early RRT.

摘要

背景

急性肾损伤(AKI)是肝移植后的常见并发症。尽管已经确定了许多 AKI 的风险因素,但它们的累积影响仍不清楚。因此,我们的目的是设计一种新的模型来预测移植后 AKI。

方法

在两个中心(n=1230)进行肝移植的患者中进行风险分析。根据 Framingham 风险方案,在多变量回归分析中,根据供体和受者的风险因素计算出预测严重 AKI 的模型。

结果

总体而言,34%的患者发生严重 AKI,包括 18%需要术后肾脏替代治疗(RRT)。有五个因素被确定为最强的预测因素:供体和受者的 BMI、DCD 移植物、FFP 需求以及受者的热缺血时间,导致分数范围为 0-25 分,AUC 为 0.70。确定了三个风险类别:低危、中危和高危。如果中危或高危患者接受肾脏保护免疫抑制方案治疗,严重 AKI 的发生率较低(29%比 45%;p=0.007)。

结论

AKI 预测评分是一种新的工具,可以识别移植后发生严重 AKI 的高危患者。该评分在移植结束时即可获得,可作为及时决定使用肾脏保护免疫抑制和早期 RRT 的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验