Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Location VU University Medical Center, Amsterdam, Netherlands; Department of Neurorehabilitation, Amsterdam Rehabilitation Research Center, Reade, Amsterdam, Netherlands.
Department of Neurorehabilitation, Amsterdam Rehabilitation Research Center, Reade, Amsterdam, Netherlands.
Arch Phys Med Rehabil. 2019 Nov;100(11):2113-2118. doi: 10.1016/j.apmr.2019.04.017. Epub 2019 May 30.
To classify patients with stroke into subgroups based on their characteristics at the moment of discharge from inpatient rehabilitation in order to predict community ambulation outcome 6 months later.
Prospective cohort study with a baseline measurement at discharge from inpatient care and final outcome determined after 6 months.
Community.
A cohort of patients (N=243) with stroke, referred for outpatient physical therapy, after completing inpatient rehabilitation in The Netherlands.
Not applicable.
A classification model was developed using Classification And Regression Tree (CART) analysis. Final outcome was determined using the community ambulation questionnaire. Potential baseline predictors included patient demographics, stroke characteristics, use of assistive devices, comfortable gait speed, balance, strength, motivation, falls efficacy, anxiety, and depression.
The CART model accurately predicted independent community ambulation in 181 of 193 patients with stroke, based on a comfortable gait speed at discharge of 0.5 meters per second or faster. In contrast, 27 of 50 patients with gait speeds below 0.5 meters per second were correctly predicted to become noncommunity walkers.
We show that comfortable gait speed is a key factor in the prognosis of community ambulation outcome. The CART model may support clinicians in organizing community services at the moment of discharge from inpatient care.
根据患者在住院康复出院时的特点对脑卒中患者进行亚组分类,以便预测 6 个月后的社区步行能力预后。
前瞻性队列研究,在住院护理出院时进行基线测量,并在 6 个月后确定最终结果。
社区。
一组(N=243)脑卒中患者,在荷兰完成住院康复后,转介接受门诊物理治疗。
不适用。
使用分类和回归树(CART)分析制定分类模型。最终结果采用社区步行能力问卷确定。潜在的基线预测指标包括患者人口统计学特征、脑卒中特征、辅助器具的使用、舒适步行速度、平衡、力量、动机、跌倒效能感、焦虑和抑郁。
根据出院时 0.5 米/秒或更快的舒适步行速度,CART 模型准确预测了 193 名脑卒中患者中的 181 名独立的社区步行能力。相比之下,在步行速度低于 0.5 米/秒的 50 名患者中,有 27 名被正确预测为无法进行社区行走。
我们表明,舒适的步行速度是社区步行能力预后的关键因素。CART 模型可以在患者从住院护理出院时为临床医生组织社区服务提供支持。