Suppr超能文献

大鼠风险决策分析。

An Analysis of Decision under Risk in Rats.

机构信息

Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA.

Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA.

出版信息

Curr Biol. 2019 Jun 17;29(12):2066-2074.e5. doi: 10.1016/j.cub.2019.05.013. Epub 2019 May 30.

Abstract

In 1979, Daniel Kahneman and Amos Tversky published a ground-breaking paper titled "Prospect Theory: An Analysis of Decision under Risk," which presented a behavioral economic theory that accounted for the ways in which humans deviate from economists' normative workhorse model, Expected Utility Theory [1, 2]. For example, people exhibit probability distortion (they overweight low probabilities), loss aversion (losses loom larger than gains), and reference dependence (outcomes are evaluated as gains or losses relative to an internal reference point). We found that rats exhibited many of these same biases, using a task in which rats chose between guaranteed and probabilistic rewards. However, prospect theory assumes stable preferences in the absence of learning, an assumption at odds with alternative frameworks such as animal learning theory and reinforcement learning [3-7]. Rats also exhibited trial history effects, consistent with ongoing learning. A reinforcement learning model in which state-action values were updated by the subjective value of outcomes according to prospect theory reproduced rats' nonlinear utility and probability weighting functions and also captured trial-by-trial learning dynamics.

摘要

1979 年,丹尼尔·卡尼曼(Daniel Kahneman)和阿莫斯·特沃斯基(Amos Tversky)发表了一篇具有开创性的论文,题为“前景理论:风险下的决策分析”[1,2],提出了一种行为经济学理论,该理论解释了人类偏离经济学家规范的基准模型——期望效用理论的方式。例如,人们表现出概率扭曲(他们高估低概率)、损失厌恶(损失比收益更明显)和参照依赖(结果相对于内部参照点被评估为收益或损失)。我们发现,大鼠在使用一种大鼠在保证奖励和概率奖励之间进行选择的任务中表现出了许多相同的偏差。然而,前景理论假设在没有学习的情况下偏好是稳定的,这一假设与动物学习理论和强化学习等替代框架不一致[3-7]。大鼠还表现出与持续学习一致的试验历史效应。根据前景理论,根据结果的主观价值更新状态-动作值的强化学习模型再现了大鼠的非线性效用和概率加权函数,并且还捕获了逐次学习的动态。

相似文献

1
An Analysis of Decision under Risk in Rats.大鼠风险决策分析。
Curr Biol. 2019 Jun 17;29(12):2066-2074.e5. doi: 10.1016/j.cub.2019.05.013. Epub 2019 May 30.
5
On the Flexibility of Basic Risk Attitudes in Monkeys.猴子基本风险态度的灵活性
J Neurosci. 2018 May 2;38(18):4383-4398. doi: 10.1523/JNEUROSCI.2260-17.2018. Epub 2018 Apr 6.
6
Risk-sensitive reinforcement learning.风险敏感强化学习
Neural Comput. 2014 Jul;26(7):1298-328. doi: 10.1162/NECO_a_00600. Epub 2014 Apr 7.
7
Probability Distortion Depends on Choice Sequence in Rhesus Monkeys.恒河猴的选择序列影响概率失真。
J Neurosci. 2019 Apr 10;39(15):2915-2929. doi: 10.1523/JNEUROSCI.1454-18.2018. Epub 2019 Jan 31.
9
Nutrient-Sensitive Reinforcement Learning in Monkeys.猴子的营养敏感强化学习。
J Neurosci. 2023 Mar 8;43(10):1714-1730. doi: 10.1523/JNEUROSCI.0752-22.2022. Epub 2023 Jan 20.

引用本文的文献

1
Neural mechanisms of maladaptive risk decision-making across psychiatric disorders.跨精神疾病的适应不良风险决策的神经机制。
Front Behav Neurosci. 2025 Jul 31;19:1637582. doi: 10.3389/fnbeh.2025.1637582. eCollection 2025.
2
Data-driven equation discovery reveals nonlinear reinforcement learning in humans.数据驱动的方程发现揭示了人类的非线性强化学习。
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2413441122. doi: 10.1073/pnas.2413441122. Epub 2025 Jul 31.
7
Sensory choices as logistic classification.感觉选择作为逻辑分类。
Neuron. 2024 Sep 4;112(17):2854-2868.e1. doi: 10.1016/j.neuron.2024.06.016. Epub 2024 Jul 15.
8
Sensory choices as logistic classification.作为逻辑分类的感官选择
bioRxiv. 2024 Jun 27:2024.01.17.576029. doi: 10.1101/2024.01.17.576029.

本文引用的文献

1
Inactivation of Medial Frontal Cortex Changes Risk Preference.内侧前额叶皮层的失活改变风险偏好。
Curr Biol. 2018 Oct 8;28(19):3114-3122.e4. doi: 10.1016/j.cub.2018.07.043. Epub 2018 Sep 20.
4
Mice learn to avoid regret.老鼠学会了避免后悔。
PLoS Biol. 2018 Jun 21;16(6):e2005853. doi: 10.1371/journal.pbio.2005853. eCollection 2018 Jun.
6
Normalized value coding explains dynamic adaptation in the human valuation process.归一化价值编码解释了人类估值过程中的动态适应。
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12696-12701. doi: 10.1073/pnas.1715293114. Epub 2017 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验