Suppr超能文献

基因共表达网络和拷贝数变异分析鉴定与多发性骨髓瘤进展相关的转录因子。

Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression.

作者信息

Yu Christina Y, Xiang Shunian, Huang Zhi, Johnson Travis S, Zhan Xiaohui, Han Zhi, Abu Zaid Mohammad, Huang Kun

机构信息

Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States.

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.

出版信息

Front Genet. 2019 May 17;10:468. doi: 10.3389/fgene.2019.00468. eCollection 2019.

Abstract

Multiple myeloma (MM) has two clinical precursor stages of disease: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the mechanism of progression is not well understood. Because gene co-expression network analysis is a well-known method for discovering new gene functions and regulatory relationships, we utilized this framework to conduct differential co-expression analysis to identify interesting transcription factors (TFs) in two publicly available datasets. We then used copy number variation (CNV) data from a third public dataset to validate these TFs. First, we identified co-expressed gene modules in two publicly available datasets each containing three conditions: normal, MGUS, and SMM. These modules were assessed for condition-specific gene expression, and then enrichment analysis was conducted on condition-specific modules to identify their biological function and upstream TFs. TFs were assessed for differential gene expression between normal and MM precursors, then validated with CNV analysis to identify candidate genes. Functional enrichment analysis reaffirmed known functional categories in MM pathology, the main one relating to immune function. Enrichment analysis revealed a handful of differentially expressed TFs between normal and either MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes of interest (, , , and ) that aid in our understanding of MM initiation and progression.

摘要

多发性骨髓瘤(MM)有两个临床前期疾病阶段:意义未明的单克隆丙种球蛋白病(MGUS)和冒烟型多发性骨髓瘤(SMM)。然而,其进展机制尚未完全明确。由于基因共表达网络分析是发现新基因功能和调控关系的常用方法,我们利用该框架在两个公开可用的数据集中进行差异共表达分析,以识别有趣的转录因子(TFs)。然后,我们使用来自第三个公开数据集的拷贝数变异(CNV)数据来验证这些TFs。首先,我们在两个公开可用的数据集中识别共表达的基因模块,每个数据集包含三种情况:正常、MGUS和SMM。对这些模块进行条件特异性基因表达评估,然后对条件特异性模块进行富集分析,以确定其生物学功能和上游TFs。评估TFs在正常与MM前期之间的差异基因表达,然后通过CNV分析进行验证,以识别候选基因。功能富集分析再次确认了MM病理学中已知的功能类别,主要与免疫功能相关。富集分析揭示了在基因表达和/或CNV方面,正常与MGUS或SMM之间存在一些差异表达的TFs。总体而言,我们识别出了四个感兴趣的基因(、、和),有助于我们理解MM的起始和进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b1b/6533571/944f69cb700c/fgene-10-00468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验