Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA.
Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA.
Nat Commun. 2019 Jun 3;10(1):2383. doi: 10.1038/s41467-019-10258-1.
DNA is an emerging medium for digital data and its adoption can be accelerated by synthesis processes specialized for storage applications. Here, we describe a de novo enzymatic synthesis strategy designed for data storage which harnesses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) in kinetically controlled conditions. Information is stored in transitions between non-identical nucleotides of DNA strands. To produce strands representing user-defined content, nucleotide substrates are added iteratively, yielding short homopolymeric extensions whose lengths are controlled by apyrase-mediated substrate degradation. With this scheme, we synthesize DNA strands carrying 144 bits, including addressing, and demonstrate retrieval with streaming nanopore sequencing. We further devise a digital codec to reduce requirements for synthesis accuracy and sequencing coverage, and experimentally show robust data retrieval from imperfectly synthesized strands. This work provides distributive enzymatic synthesis and information-theoretic approaches to advance digital information storage in DNA.
DNA 是一种新兴的数字数据介质,通过专门用于存储应用的合成工艺可以加速其采用。在这里,我们描述了一种新的酶促合成策略,该策略专为数据存储而设计,利用无模板依赖性的聚合酶末端脱氧核苷酸转移酶(TdT)在动力学控制条件下进行。信息存储在 DNA 链中不同核苷酸之间的转换中。为了生成代表用户定义内容的链,我们迭代地添加核苷酸底物,产生短的均聚物延伸,其长度由无三磷酸腺苷酶介导的底物降解控制。通过这种方案,我们合成了携带 144 位的 DNA 链,包括寻址,并通过流式纳孔测序进行了检索。我们进一步设计了一种数字编码解码器,以降低对合成精度和测序覆盖率的要求,并通过实验证明了从合成不完全的链中稳健地检索数据。这项工作提供了分布式酶促合成和信息论方法,以推进 DNA 中的数字信息存储。