Suppr超能文献

膜转运蛋白的作用:从序列到表型的联系。

Roles of membrane transporters: connecting the dots from sequence to phenotype.

机构信息

ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.

ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Acton, ACT, Australia.

出版信息

Ann Bot. 2019 Sep 24;124(2):201-208. doi: 10.1093/aob/mcz066.

Abstract

BACKGROUND

Plant membrane transporters are involved in diverse cellular processes underpinning plant physiology, such as nutrient acquisition, hormone movement, resource allocation, exclusion or sequestration of various solutes from cells and tissues, and environmental and developmental signalling. A comprehensive characterization of transporter function is therefore key to understanding and improving plant performance.

SCOPE AND CONCLUSIONS

In this review, we focus on the complexities involved in characterizing transporter function and the impact that this has on current genomic annotations. Specific examples are provided that demonstrate why sequence homology alone cannot be relied upon to annotate and classify transporter function, and to show how even single amino acid residue variations can influence transporter activity and specificity. Misleading nomenclature of transporters is often a source of confusion in transporter characterization, especially for people new to or outside the field. Here, to aid researchers dealing with interpretation of large data sets that include transporter proteins, we provide examples of transporters that have been assigned names that misrepresent their cellular functions. Finally, we discuss the challenges in connecting transporter function at the molecular level with physiological data, and propose a solution through the creation of new databases. Further fundamental in-depth research on specific transport (and other) proteins is still required; without it, significant deficiencies in large-scale data sets and systems biology approaches will persist. Reliable characterization of transporter function requires integration of data at multiple levels, from amino acid residue sequence annotation to more in-depth biochemical, structural and physiological studies.

摘要

背景

植物膜转运蛋白参与多种细胞过程,这些过程是植物生理学的基础,如营养物质的获取、激素的运动、资源的分配、各种溶质从细胞和组织中的排除或隔离,以及环境和发育信号。因此,全面描述转运蛋白的功能是理解和提高植物性能的关键。

范围和结论

在这篇综述中,我们重点讨论了描述转运蛋白功能的复杂性,以及这对当前基因组注释的影响。提供了具体的例子,说明了为什么仅依靠序列同源性不能注释和分类转运蛋白的功能,以及如何即使单个氨基酸残基的变化也会影响转运蛋白的活性和特异性。转运蛋白的误导性命名法通常是转运蛋白特征描述中的一个混淆源,尤其是对于新接触或不熟悉该领域的人来说。在这里,为了帮助研究人员解释包括转运蛋白在内的大型数据集,我们提供了一些被赋予了与其细胞功能不符的名称的转运蛋白的例子。最后,我们讨论了将分子水平的转运蛋白功能与生理数据联系起来的挑战,并提出了通过创建新数据库来解决这一问题的方案。仍然需要对特定转运蛋白(和其他)进行进一步的基础深入研究;否则,大规模数据集和系统生物学方法中的重大缺陷将持续存在。转运蛋白功能的可靠描述需要整合多个层次的数据,从氨基酸残基序列注释到更深入的生化、结构和生理研究。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验