Suppr超能文献

物候学中的线索识别:当前统计工具预测性能的案例研究。

Cue identification in phenology: A case study of the predictive performance of current statistical tools.

机构信息

Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK.

Department of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

出版信息

J Anim Ecol. 2019 Sep;88(9):1428-1440. doi: 10.1111/1365-2656.13038. Epub 2019 Jun 27.

Abstract

Changes in the timing of life-history events (phenology) are a widespread consequence of climate change. Predicting population resilience requires knowledge of how phenology is likely to change over time, which can be gained by identifying the specific environmental cues that drive phenological events. Cue identification is often achieved with statistical testing of candidate cues. As the number of methods used to generate predictions increases, assessing the predictive accuracy of different approaches has become necessary. This study aims to (a) provide an empirical illustration of the predictive ability of five commonly applied statistical methods for cue identification (absolute and relative sliding time window analyses, penalized signal regression, climate sensitivity profiles and a growing degree-day model) and (b) discuss approaches for implementing cue identification methods in different systems. Using a dataset of mean clutch initiation timing in wild great tits (Parus major), we explored how the days of the year identified as most important, and the aggregate statistic identified as a cue, differed between statistical methods and with respect to the time span of data used. Each method's predictive capacity was tested using cross-validation and assessed for robustness to varying sample size. We show that the identified critical time window of cue sensitivity was consistent across four of the five methods. The accuracy and precision of predictions differed by method with penalized signal regression resulting in the most accurate and most precise predictions in our case. Accuracy was maximal for near-future predictions and showed a relationship with time. The difference between predictions and observations systematically shifted across the study from preceding observations to lagging. This temporal trend in prediction error suggests that the current statistical tools either fail to capture a key component of the cue-phenology relationship, or the relationship itself is changing through time in our system. These two influences need to be teased apart if we are to generate realistic predictions of phenological change. We recommend future phenological studies to challenge the idea of a static cue-phenology relationship and should cross-validate results across multiple time periods.

摘要

生物生命史事件(物候)时间的变化是气候变化的一个普遍后果。预测种群的恢复力需要了解物候学随时间的变化趋势,这可以通过确定驱动物候事件的特定环境线索来实现。线索识别通常通过对候选线索进行统计检验来完成。随着用于生成预测的方法数量的增加,评估不同方法的预测准确性变得必要。本研究旨在:(a) 提供对五种常用于线索识别的统计方法(绝对和相对滑动时间窗口分析、惩罚信号回归、气候敏感度分布和度日模型)的预测能力的实证说明;(b) 讨论在不同系统中实施线索识别方法的方法。使用野生大山雀(Parus major)平均卵窝开始时间的数据集,我们探讨了不同方法确定的最重要天数和综合统计数据作为线索有何不同,以及数据的时间跨度不同。使用交叉验证测试了每种方法的预测能力,并评估了其对样本量变化的稳健性。我们表明,五个方法中的四个都具有一致的关键时间窗口线索敏感度。预测的准确性和精度因方法而异,惩罚信号回归的预测结果在我们的案例中最为准确和精确。预测的准确性对于近期预测最高,并且与时间呈正相关。预测和观测之间的差异随着研究从先前的观测到滞后的观测而系统地变化。这种预测误差的时间趋势表明,当前的统计工具要么未能捕捉到线索-物候关系的关键组成部分,要么该关系本身在我们的系统中随时间而变化。如果我们要生成物候变化的现实预测,就需要将这两个影响因素区分开来。我们建议未来的物候学研究挑战静态线索-物候关系的观点,并应在多个时间段内交叉验证结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验