Suppr超能文献

大块金属玻璃原位变形过程中纳米结构变化的直接测量。

Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass.

作者信息

Pekin Thomas C, Ding Jun, Gammer Christoph, Ozdol Burak, Ophus Colin, Asta Mark, Ritchie Robert O, Minor Andrew M

机构信息

Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.

National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.

出版信息

Nat Commun. 2019 Jun 4;10(1):2445. doi: 10.1038/s41467-019-10416-5.

Abstract

To date, there has not yet been a direct observation of the initiation and propagation of individual defects in metallic glasses during deformation at the nanoscale. Here, we show through a combination of in situ nanobeam electron diffraction and large-scale molecular dynamics simulations that we can directly observe changes to the local short to medium range atomic ordering during the formation of a shear band. We observe experimentally a spatially resolved reduction of order prior to shear banding due to increased strain. We compare this to molecular dynamics simulations, in which a similar reduction in local order is seen, and caused by shear transformation zone activation, providing direct experimental evidence for this proposed nucleation mechanism for shear bands in amorphous solids. Our observation serves as a link between the atomistic molecular dynamics simulation and the bulk mechanical properties, providing insight into how one could increase ductility in glassy materials.

摘要

迄今为止,尚未有人在纳米尺度下对金属玻璃在变形过程中单个缺陷的萌生与扩展进行直接观测。在此,我们通过原位纳米束电子衍射与大规模分子动力学模拟相结合的方法表明,我们能够直接观测到在剪切带形成过程中局部短程至中程原子有序性的变化。我们通过实验观察到,在剪切带形成之前,由于应变增加,有序性在空间上呈现出下降的趋势。我们将此与分子动力学模拟结果进行比较,在模拟中也观察到了类似的局部有序性降低现象,且这是由剪切转变区激活所导致的,从而为非晶态固体中剪切带的这一拟议形核机制提供了直接的实验证据。我们的观测结果在原子分子动力学模拟与整体力学性能之间架起了一座桥梁,有助于深入了解如何提高玻璃态材料的延展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6910/6547718/ac49c3bc560d/41467_2019_10416_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验