Zhao Shiteng, Li Zezhou, Zhu Chaoyi, Yang Wen, Zhang Zhouran, Armstrong David E J, Grant Patrick S, Ritchie Robert O, Meyers Marc A
University of California, Berkeley, Berkeley, CA 94720, USA.
University of California, San Diego, La Jolla, CA 92093, USA.
Sci Adv. 2021 Jan 29;7(5). doi: 10.1126/sciadv.abb3108. Print 2021 Jan.
Ever-harsher service conditions in the future will call for materials with increasing ability to undergo deformation without sustaining damage while retaining high strength. Prime candidates for these conditions are certain high-entropy alloys (HEAs), which have extraordinary work-hardening ability and toughness. By subjecting the equiatomic CrMnFeCoNi HEA to severe plastic deformation through swaging followed by either quasi-static compression or dynamic deformation in shear, we observe a dense structure comprising stacking faults, twins, transformation from the face-centered cubic to the hexagonal close-packed structure, and, of particular note, amorphization. The coordinated propagation of stacking faults and twins along {111} planes generates high-deformation regions, which can reorganize into hexagonal packets; when the defect density in these regions reaches a critical level, they generate islands of amorphous material. These regions can have outstanding mechanical properties, which provide additional strengthening and/or toughening mechanisms to enhance the capability of these alloys to withstand extreme loading conditions.
未来日益严苛的服役条件将需要具备更强能力的材料,即在保持高强度的同时能够承受变形而不遭受损伤。满足这些条件的主要候选材料是某些高熵合金(HEA),它们具有非凡的加工硬化能力和韧性。通过对等原子CrMnFeCoNi高熵合金进行锻造使其发生严重塑性变形,随后进行准静态压缩或剪切动态变形,我们观察到一种致密结构,其中包括堆垛层错、孪晶、从面心立方结构到六方密堆结构的转变,特别值得注意的是还出现了非晶化现象。堆垛层错和孪晶沿{111}面的协同扩展产生了高变形区域,这些区域可以重新组织成六方晶块;当这些区域的缺陷密度达到临界水平时,它们会产生非晶态材料岛。这些区域可能具有出色的力学性能,为增强这些合金承受极端载荷条件的能力提供额外的强化和/或增韧机制。