Suppr超能文献

基于时间局部多变量同步指数的基于稳态视觉诱发电位的脑机接口的稳健频率识别。

Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index.

作者信息

Zhang Yangsong, Guo Daqing, Xu Peng, Zhang Yu, Yao Dezhong

机构信息

School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, 621010 China.

Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 China.

出版信息

Cogn Neurodyn. 2016 Dec;10(6):505-511. doi: 10.1007/s11571-016-9398-9. Epub 2016 Jul 19.

Abstract

Multivariate synchronization index (MSI) has been proved to be an efficient method for frequency recognition in SSVEP-BCI systems. It measures the correlation according to the entropy of the normalized eigenvalues of the covariance matrix of multichannel signals. In the MSI method, the estimation of covariance matrix omits the temporally local structure of samples. In this study, a new spatio-temporal method, termed temporally local MSI (TMSI), was presented. This new method explicitly exploits temporally local information in modelling the covariance matrix. In order to evaluate the performance of the TMSI, we performs a comparison between the two methods on the real SSVEP datasets from eleven subjects. The results show that the TMSI outperforms the standard MSI. TMSI benefits from exploiting the temporally local structure of EEG signals, and could be a potential method for robust performance of SSVEP-based BCI.

摘要

多变量同步指数(MSI)已被证明是稳态视觉诱发电位脑机接口(SSVEP-BCI)系统中一种有效的频率识别方法。它根据多通道信号协方差矩阵归一化特征值的熵来测量相关性。在MSI方法中,协方差矩阵的估计忽略了样本的时间局部结构。在本研究中,提出了一种新的时空方法,称为时间局部MSI(TMSI)。这种新方法在协方差矩阵建模中明确利用了时间局部信息。为了评估TMSI的性能,我们在来自11名受试者的真实SSVEP数据集上对这两种方法进行了比较。结果表明,TMSI优于标准MSI。TMSI受益于利用脑电信号的时间局部结构,可能是一种实现基于SSVEP的BCI稳健性能的潜在方法。

相似文献

1
Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index.
Cogn Neurodyn. 2016 Dec;10(6):505-511. doi: 10.1007/s11571-016-9398-9. Epub 2016 Jul 19.
2
Filter bank temporally local multivariate synchronization index for SSVEP-based BCI.
BMC Bioinformatics. 2024 Jul 2;25(1):227. doi: 10.1186/s12859-024-05838-y.
3
Time-frequency feature extraction based on multivariable synchronization index for training-free SSVEP-based BCI.
Cogn Neurodyn. 2024 Aug;18(4):1733-1741. doi: 10.1007/s11571-023-10035-3. Epub 2023 Dec 11.
4
Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface.
J Neurosci Methods. 2014 Jan 15;221:32-40. doi: 10.1016/j.jneumeth.2013.07.018. Epub 2013 Aug 6.
6
Inter- and Intra-subject Template-Based Multivariate Synchronization Index Using an Adaptive Threshold for SSVEP-Based BCIs.
Front Neurosci. 2020 Sep 9;14:717. doi: 10.3389/fnins.2020.00717. eCollection 2020.
7
Filter Bank-Driven Multivariate Synchronization Index for Training-Free SSVEP BCI.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:934-943. doi: 10.1109/TNSRE.2021.3073165. Epub 2021 May 25.
8
Assessment of high-frequency steady-state visual evoked potentials from below-the-hairline areas for a brain-computer interface based on Depth-of-Field.
Comput Methods Programs Biomed. 2020 Feb;184:105271. doi: 10.1016/j.cmpb.2019.105271. Epub 2019 Dec 15.
9
A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1930-1933. doi: 10.1109/EMBC.2017.8037226.
10
Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification.
Cogn Neurodyn. 2020 Oct;14(5):689-696. doi: 10.1007/s11571-020-09620-7. Epub 2020 Jul 29.

引用本文的文献

1
Time-frequency feature extraction based on multivariable synchronization index for training-free SSVEP-based BCI.
Cogn Neurodyn. 2024 Aug;18(4):1733-1741. doi: 10.1007/s11571-023-10035-3. Epub 2023 Dec 11.
2
Filter bank temporally local multivariate synchronization index for SSVEP-based BCI.
BMC Bioinformatics. 2024 Jul 2;25(1):227. doi: 10.1186/s12859-024-05838-y.
3
Fractal Phototherapy in Maximizing Retina and Brain Plasticity.
Adv Neurobiol. 2024;36:585-637. doi: 10.1007/978-3-031-47606-8_31.
4
Multi-information improves the performance of CCA-based SSVEP classification.
Cogn Neurodyn. 2024 Feb;18(1):165-172. doi: 10.1007/s11571-022-09923-x. Epub 2023 Jan 9.
5
eldBETA: A Large Eldercare-oriented Benchmark Database of SSVEP-BCI for the Aging Population.
Sci Data. 2022 May 31;9(1):252. doi: 10.1038/s41597-022-01372-9.
6
Brain-Computer Interface: Advancement and Challenges.
Sensors (Basel). 2021 Aug 26;21(17):5746. doi: 10.3390/s21175746.
7
Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification.
Cogn Neurodyn. 2020 Oct;14(5):689-696. doi: 10.1007/s11571-020-09620-7. Epub 2020 Jul 29.
8
Inter- and Intra-subject Template-Based Multivariate Synchronization Index Using an Adaptive Threshold for SSVEP-Based BCIs.
Front Neurosci. 2020 Sep 9;14:717. doi: 10.3389/fnins.2020.00717. eCollection 2020.
9
Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review.
Front Neurorobot. 2020 Jun 3;14:25. doi: 10.3389/fnbot.2020.00025. eCollection 2020.
10
An ERP-based BCI with peripheral stimuli: validation with ALS patients.
Cogn Neurodyn. 2020 Feb;14(1):21-33. doi: 10.1007/s11571-019-09541-0. Epub 2019 Jun 11.

本文引用的文献

1
Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms.
Proc IEEE Inst Electr Electron Eng. 2015 Jun;103(6):907-925. doi: 10.1109/jproc.2015.2407272. Epub 2015 May 20.
2
Discriminative Feature Extraction via Multivariate Linear Regression for SSVEP-Based BCI.
IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):532-41. doi: 10.1109/TNSRE.2016.2519350. Epub 2016 Jan 21.
3
Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
J Neurosci Methods. 2016 Jan 30;258:104-13. doi: 10.1016/j.jneumeth.2015.11.001. Epub 2015 Nov 10.
4
High-speed spelling with a noninvasive brain-computer interface.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):E6058-67. doi: 10.1073/pnas.1508080112. Epub 2015 Oct 19.
5
A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials.
PLoS One. 2015 Oct 19;10(10):e0140703. doi: 10.1371/journal.pone.0140703. eCollection 2015.
6
An efficient frequency recognition method based on likelihood ratio test for SSVEP-based BCI.
Comput Math Methods Med. 2014;2014:908719. doi: 10.1155/2014/908719. Epub 2014 Aug 28.
7
Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals.
IEEE Trans Neural Syst Rehabil Eng. 2014 Nov;22(6):1186-97. doi: 10.1109/TNSRE.2014.2319334. Epub 2014 Apr 25.
8
Visual and auditory brain-computer interfaces.
IEEE Trans Biomed Eng. 2014 May;61(5):1436-47. doi: 10.1109/TBME.2014.2300164.
9
Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives.
IEEE Trans Biomed Eng. 2014 May;61(5):1425-35. doi: 10.1109/TBME.2014.2312397.
10
SSVEP recognition using common feature analysis in brain-computer interface.
J Neurosci Methods. 2015 Apr 15;244:8-15. doi: 10.1016/j.jneumeth.2014.03.012. Epub 2014 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验