Suppr超能文献

一种新颖的自动数字算法,可准确量化非酒精性脂肪性肝病组织病理全切片图像中的脂肪变性。

A Novel Automatic Digital Algorithm that Accurately Quantifies Steatosis in NAFLD on Histopathological Whole-Slide Images.

机构信息

Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands.

Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands.

出版信息

Cytometry B Clin Cytom. 2019 Nov;96(6):521-528. doi: 10.1002/cyto.b.21790. Epub 2019 Jun 7.

Abstract

BACKGROUND

Accurate assessment of hepatic steatosis is a key to grade disease severity in non-alcoholic fatty liver disease (NAFLD).

METHODS

We developed a digital automated quantification of steatosis on whole-slide images (WSIs) of liver tissue and performed a validation study. Hematoxylin-eosin stained liver tissue slides were digitally scanned, and steatotic areas were manually annotated. We identified thresholds for size and roundness parameters by logistic regression to discriminate steatosis from surrounding liver tissue. The resulting algorithm produces a steatosis proportionate area (SPA; ratio of steatotic area to total tissue area described as percentage). The software can be implemented as a Java plug-in in FIJI, in which digital WSI can be processed automatically using the Pathomation extension.

RESULTS

We obtained liver tissue specimens from 61 NAFLD patients and 18 controls. The area under the curve of correctly classified steatosis by the algorithm was 0.970 (95% CI 0.968-0.973), P < 0.001. Accuracy of the algorithm was 91.9%, with a classification error of 8.1%. SPA correlated significantly with steatosis grade (Rs = 0.845, CI: 0.749-0.902, P < 0.001) and increased significantly with each individual steatosis grade, except between Grade 2 and 3.

CONCLUSIONS

We have developed a novel digital analysis algorithm that accurately quantifies steatosis on WSIs of liver tissue. This algorithm can be incorporated when quantification of steatosis is warranted, such as in clinical trials studying efficacy of new therapeutic interventions in NAFLD. © 2019 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.

摘要

背景

准确评估肝脂肪变性是诊断非酒精性脂肪性肝病(NAFLD)严重程度的关键。

方法

我们开发了一种用于肝脏组织全切片图像(WSI)的肝脂肪变性的数字自动量化方法,并进行了验证研究。苏木精-伊红染色的肝组织切片被数字化扫描,脂肪变性区域被手动注释。我们通过逻辑回归确定大小和圆形度参数的阈值,以区分脂肪变性与周围肝组织。由此产生的算法产生脂肪变性比例面积(SPA;脂肪变性面积与总组织面积的比例,以百分比表示)。该软件可以作为 FIJI 的 Java 插件实现,其中数字 WSI 可以使用 Pathomation 扩展自动进行处理。

结果

我们从 61 名 NAFLD 患者和 18 名对照中获得了肝组织标本。该算法正确分类脂肪变性的曲线下面积为 0.970(95%CI 0.968-0.973),P < 0.001。该算法的准确率为 91.9%,分类错误率为 8.1%。SPA 与脂肪变性程度显著相关(Rs=0.845,CI:0.749-0.902,P < 0.001),并且随着每个单独的脂肪变性程度显著增加,除了 2 级和 3 级之间。

结论

我们开发了一种新的数字分析算法,可准确量化肝脏组织 WSI 上的脂肪变性。当需要量化脂肪变性时,可以使用该算法,例如在研究新治疗干预措施在 NAFLD 中的疗效的临床试验中。 © 2019 作者。细胞分析杂志:临床细胞分析由 Wiley 期刊出版公司代表国际临床细胞分析学会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d55/6899563/fd3718864c49/CYTO-96-521-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验