Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil.
Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil.
Biochim Biophys Acta Bioenerg. 2019 Jul 1;1860(7):541-548. doi: 10.1016/j.bbabio.2019.05.004. Epub 2019 Jun 4.
Molecular recognition of the amphiphilic electron carrier ubiquinone (Q) by respiratory complexes is a fundamental part of electron transfer chains in mitochondria and bacteria. The primary respiratory complex I binds Q in a long and narrow protein chamber to catalyse its reduction. But, the binding mechanism and the role of chamber hydration in substrate selectivity and stability are unclear. Here, large-scale atomistic molecular dynamics simulations and estimated free energy profiles are used to characterize in detail the binding mechanism to complex I of Q with short and with long isoprenoid tails. A highly stable binding site with two different poses near the chamber exit and a secondary reactive site near the N2 iron-sulfur cluster are found which may lead to an alternative Q redox chemistry and help to explain complex I reactivity. The binding energetics depends mainly on polar interactions of the Q-head and on the counterbalanced hydration of Q-tail isoprenoid units and hydrophobic residues inside the protein chamber. Selectivity upon variation of tail length arises by shifting the hydration balance. This internal hydration mechanism may have implications for binding of amphiphilic molecules to cavities in other membrane proteins.
亲脂性电子载体泛醌(Q)与呼吸复合物的分子识别是线粒体和细菌中电子传递链的基本组成部分。主要的呼吸复合物 I 将 Q 结合在一个狭长的蛋白质腔内,以催化其还原。但是,结合机制以及腔室水合作用在底物选择性和稳定性中的作用尚不清楚。在这里,使用大规模原子分子动力学模拟和估计的自由能曲线来详细描述 Q 与短和长异戊二烯尾部与复合物 I 的结合机制。在腔室出口附近发现了一个具有两种不同构象的高度稳定结合位点和一个靠近 N2 铁硫簇的次要反应性位点,这可能导致替代的 Q 氧化还原化学,并有助于解释复合物 I 的反应性。结合能主要取决于 Q 头部的极性相互作用以及 Q 尾部异戊二烯单元和疏水残基在蛋白质腔内的平衡水合作用。通过改变尾部长度来改变选择性,这是由于水合平衡的改变所致。这种内部水合作用机制可能对其他膜蛋白腔室中亲脂性分子的结合具有影响。