Xu Wen-Sheng, Douglas Jack F, Freed Karl F
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
ACS Macro Lett. 2016 Dec 20;5(12):1375-1380. doi: 10.1021/acsmacrolett.6b00795. Epub 2016 Nov 29.
Numerous experiments reveal that the dynamics of glass-forming polymer melts are profoundly influenced by the application of pressure, but a fundamental microscopic understanding of these observations remains incomplete. We explore the structural relaxation of a model glass-forming polymer melt over a wide range of pressures () by molecular dynamics simulation. In accord with experiments for nonassociating polymer melts and the generalized entropy theory, we find that the dependence of the structural relaxation time (τ) can be described by a pressure analog of the Vogel-Fulcher-Tammann equation and that the characteristic temperatures of glass formation increase with , while the fragility decreases with . Further, we demonstrate that τ for various can quantitatively be described by the string model of glass formation, where the enthalpy and entropy of activation are found to be proportional, an effect that is expected to apply to polymeric materials under various applied fields.
大量实验表明,压力的施加会深刻影响玻璃态形成聚合物熔体的动力学,但对这些观察结果的基本微观理解仍不完整。我们通过分子动力学模拟,在很宽的压力范围()内研究了一种模型玻璃态形成聚合物熔体的结构弛豫。与非缔合聚合物熔体的实验以及广义熵理论一致,我们发现结构弛豫时间(τ)对压力的依赖性可以用Vogel-Fulcher-Tammann方程的压力类似物来描述,并且玻璃形成的特征温度随压力升高而增加,而脆性随压力降低。此外,我们证明,对于不同压力下的τ,可以用玻璃形成的弦模型进行定量描述,其中活化焓和活化熵成比例,预计这种效应适用于各种应用领域下的聚合物材料。