Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.
Autophagy. 2020 Feb;16(2):334-346. doi: 10.1080/15548627.2019.1628539. Epub 2019 Jun 14.
Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A ; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.
自噬选择性地靶向入侵细菌以保护细胞,而细菌病原体则会对抗自噬以在细胞内存活。经典自噬的起始涉及 PIK3C3 复合物,但靶向 A 组 (GAS) 的自噬与 PIK3C3 无关。我们报告称,GAS 感染会引发 PIK3C3 依赖性和非依赖性自噬,并且 GAS 效应物 NAD-糖基水解酶 (Nga) 选择性调节 PIK3C3 依赖性自噬。GAS 通过分泌链球菌溶血素 O 和 Nga 来调节饥饿诱导的(经典)PIK3C3 依赖性自噬,并且 Nga 还在早期感染期间抑制 PIK3C3 依赖性 GAS 靶向自噬体形成,并促进细胞内增殖。这种依赖 Nga 的自噬体形成涉及包含 ATG14 的 PIK3C3 复合物和 RAB1 GTPase,这两者对于 Nga 不敏感的 RAB9A/RAB17 阳性自噬体形成都是必不可少的。此外,尽管在 GAS 感染过程中会发生 MTOR 抑制和随后的 ULK1、BECN1 和 ATG14 的激活,但 GAS 与 ATG14 的募集受到损害,表明 Nga 抑制了包含 ATG14 的 PIK3C3 复合物向自噬体形成部位的募集。我们的研究结果不仅揭示了一种以前未被识别的 GAS-宿主相互作用,该相互作用可调节经典自噬,还揭示了多种使用不同调节剂靶向细菌感染的自噬途径的存在:ATG5:自噬相关 5;ATG14:自噬相关 14;ATG16L1:自噬相关 16 样 1;BECN1:自噬相关蛋白 1;CALCOCO2:钙结合和卷曲螺旋结构域 2;GAS:A 组;GcAV:包含 GAS 的自噬体样空泡;LAMP1:溶酶体相关膜蛋白 1;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MTORC1:雷帕霉素靶蛋白激酶复合物 1;Nga:NAD-糖基水解酶;PIK3C3:磷脂酰肌醇 3-激酶催化亚单位 3;PtdIns3P:磷酸肌醇 3-磷酸;PtdIns4P:磷酸肌醇 4-磷酸;RAB:RAB,RAS 癌基因 GTPase 家族成员;RAB1A:RAB1A,RAS 癌基因家族成员;RAB11A:RAB11A,RAS 癌基因家族成员;RAB17:RAB17,RAS 癌基因家族成员;RAB24:RAB24,RAS 癌基因家族成员;RPS6KB1:核糖体蛋白 S6 激酶 B1;SLO:链球菌溶血素 O;SQSTM1:自噬体相关蛋白 1;ULK1:UNC-51 样自噬激活激酶 1;WIPI2:WD 重复结构域,磷酸肌醇相互作用 2。