Suppr超能文献

我们需要改变结构方程建模中嵌套模型比较的 RMSEA 计算方法。

We need to change how we compute RMSEA for nested model comparisons in structural equation modeling.

机构信息

Department of Psychology, University of British Columbia.

Concord Consulting Corporation.

出版信息

Psychol Methods. 2024 Jun;29(3):480-493. doi: 10.1037/met0000537. Epub 2023 Jan 9.

Abstract

Comparison of nested models is common in applications of structural equation modeling (SEM). When two models are nested, model comparison can be done via a chi-square difference test or by comparing indices of approximate fit. The advantage of fit indices is that they permit some amount of misspecification in the additional constraints imposed on the model, which is a more realistic scenario. The most popular index of approximate fit is the root mean square error of approximation (RMSEA). In this article, we argue that the dominant way of comparing RMSEA values for two nested models, which is simply taking their difference, is problematic and will often mask misfit, particularly in model comparisons with large initial degrees of freedom. We instead advocate computing the RMSEA associated with the chi-square difference test, which we call RMSEA. We are not the first to propose this index, and we review numerous methodological articles that have suggested it. Nonetheless, these articles appear to have had little impact on actual practice. The modification of current practice that we call for may be particularly needed in the context of measurement invariance assessment. We illustrate the difference between the current approach and our advocated approach on three examples, where two involve multiple-group and longitudinal measurement invariance assessment and the third involves comparisons of models with different numbers of factors. We conclude with a discussion of recommendations and future research directions. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

嵌套模型的比较在结构方程模型(SEM)的应用中很常见。当两个模型嵌套时,可以通过卡方差异检验或通过比较近似拟合指数来进行模型比较。拟合指数的优势在于,它们允许模型中施加的额外约束存在一定程度的不精确,这是一个更现实的情况。最受欢迎的近似拟合指数是近似均方根误差(RMSEA)。在本文中,我们认为比较两个嵌套模型的 RMSEA 值的主要方法,即简单地取它们的差值,是有问题的,并且通常会掩盖不拟合,特别是在具有较大初始自由度的模型比较中。我们建议计算与卡方差异检验相关的 RMSEA,我们称之为 RMSEA。我们并不是第一个提出这个指数的人,我们回顾了许多提出这个指数的方法学文章。尽管如此,这些文章似乎对实际实践的影响很小。我们所呼吁的对当前实践的修改,在测量不变性评估的背景下可能特别需要。我们在三个例子上展示了当前方法和我们提倡的方法之间的区别,其中两个涉及多组和纵向测量不变性评估,第三个涉及具有不同因子数的模型比较。最后我们讨论了建议和未来的研究方向。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验