Chu Jianhua, Wang Wei Alex, Feng Jianrui, Lao Cheng-Yen, Xi Kai, Xing Lidong, Han Kun, Li Qiang, Song Lei, Li Ping, Li Xin, Bao Yanping
State Key Laboratory of Advanced Metallurgy , University of Science and Technology Beijing , Beijing 100083 , China.
Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China.
ACS Nano. 2019 Jun 25;13(6):6906-6916. doi: 10.1021/acsnano.9b01773. Epub 2019 Jun 11.
Transition metal sulfides are deemed as attractive anode materials for potassium-ion batteries (KIBs) due to their high theoretical capacities based on conversion and alloying reaction. However, the main challenges are the low electronic conductivity, huge volume expansion, and consequent formation of unstable solid electrolyte interphase (SEI) upon potassiation/depotassiation. Herein, zinc sulfide dendrites deeply nested in the tertiary hierarchical structure through a solvothermal-pyrolysis process are designed as an anode material for KIBs. The tertiary hierarchical structure is composed of the primary ultrafine ZnS nanorods, the secondary carbon nanosphere, and the tertiary carbon-encapsulated ZnS subunits nanosphere structure. The architectural design of this material provides a stable diffusion path and enhances effective conductivity from the interior to exterior for both K ions and electrons, buffers the volume expansion, and constructs a stable SEI during cycling. A stable specific capacity of 330 mAh g is achieved after 100 cycles at the current density of 50 mA g and 208 mAh g at 500 mA g over 300 cycles. Using density functional theory calculations, we discover the interactions between ZnS and carbon interface can effectively decrease the K ions diffusion barrier and therefore promote the reversibility of K ions storage.
过渡金属硫化物因其基于转化和合金化反应的高理论容量,被视为钾离子电池(KIBs)颇具吸引力的负极材料。然而,主要挑战在于其低电子导电性、巨大的体积膨胀,以及在钾化/脱钾过程中随之形成的不稳定固体电解质界面(SEI)。在此,通过溶剂热-热解过程将深深嵌套在三级分层结构中的硫化锌枝晶设计为KIBs的负极材料。三级分层结构由初级超细ZnS纳米棒、次级碳纳米球和三级碳包覆的ZnS亚单元纳米球结构组成。这种材料的结构设计为钾离子和电子提供了稳定的扩散路径,并增强了从内部到外部的有效导电性,缓冲了体积膨胀,并在循环过程中构建了稳定的SEI。在50 mA g的电流密度下循环100次后,实现了330 mAh g的稳定比容量,在500 mA g下300次循环后为208 mAh g。通过密度泛函理论计算,我们发现ZnS与碳界面之间的相互作用可以有效降低钾离子扩散势垒,从而促进钾离子存储的可逆性。