Suppr超能文献

相似文献

1
Quantitative Imaging features Improve Discrimination of Malignancy in Pulmonary nodules.
Sci Rep. 2019 Jun 12;9(1):8528. doi: 10.1038/s41598-019-44562-z.
2
Predicting Malignancy Risk of Screen-Detected Lung Nodules-Mean Diameter or Volume.
J Thorac Oncol. 2019 Feb;14(2):203-211. doi: 10.1016/j.jtho.2018.10.006. Epub 2018 Oct 25.
6
Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines.
Eur Radiol. 2017 Oct;27(10):4019-4029. doi: 10.1007/s00330-017-4767-2. Epub 2017 Mar 14.
8
Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules.
Clin Cancer Res. 2017 Mar 15;23(6):1442-1449. doi: 10.1158/1078-0432.CCR-15-3102. Epub 2016 Sep 23.
9
Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography.
JAMA Netw Open. 2020 Feb 5;3(2):e1921221. doi: 10.1001/jamanetworkopen.2019.21221.

引用本文的文献

1
CT Radiomics-based machine learning approach for the invasiveness of pulmonary ground-glass nodules prediction.
Eur J Radiol Open. 2025 Aug 23;15:100680. doi: 10.1016/j.ejro.2025.100680. eCollection 2025 Dec.
3
Radiomic Features Prognosticate Treatment Response in CAR-T Cell Therapy.
Cancers (Basel). 2025 May 30;17(11):1832. doi: 10.3390/cancers17111832.
6
Deep learning models for CT image classification: a comprehensive literature review.
Quant Imaging Med Surg. 2025 Jan 2;15(1):962-1011. doi: 10.21037/qims-24-1400. Epub 2024 Dec 30.
7
Use of fractals in determining the malignancy degree of lung nodules.
Front Med Technol. 2024 Mar 26;6:1362688. doi: 10.3389/fmedt.2024.1362688. eCollection 2024.

本文引用的文献

1
Cancer statistics, 2018.
CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442. Epub 2018 Jan 4.
3
Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines.
Eur Radiol. 2017 Oct;27(10):4019-4029. doi: 10.1007/s00330-017-4767-2. Epub 2017 Mar 14.
4
Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017.
Radiology. 2017 Jul;284(1):228-243. doi: 10.1148/radiol.2017161659. Epub 2017 Feb 23.
5
Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels.
Med Phys. 2017 Mar;44(3):1050-1062. doi: 10.1002/mp.12123.
6
The Vancouver Lung Cancer Risk Prediction Model: Assessment by Using a Subset of the National Lung Screening Trial Cohort.
Radiology. 2017 Apr;283(1):264-272. doi: 10.1148/radiol.2016152627. Epub 2016 Oct 13.
7
Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules.
Clin Cancer Res. 2017 Mar 15;23(6):1442-1449. doi: 10.1158/1078-0432.CCR-15-3102. Epub 2016 Sep 23.
9
Predicting Malignant Nodules from Screening CT Scans.
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.
10
Reproducibility of radiomics for deciphering tumor phenotype with imaging.
Sci Rep. 2016 Mar 24;6:23428. doi: 10.1038/srep23428.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验