Suppr超能文献

维也纳屋顶和地面花粉浓度的统计与计算方法评估——如何纳入每日众包症状数据

The evaluation of pollen concentrations with statistical and computational methods on rooftop and on ground level in Vienna - How to include daily crowd-sourced symptom data.

作者信息

Bastl Maximilian, Bastl Katharina, Karatzas Kostas, Aleksic Marija, Zetter Reinhard, Berger Uwe

机构信息

Aerobiology and Pollen Information Research Unit, Department of Oto-Rhino-Laryngology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.

Department of Paleontology, University of Vienna, Geozentrum UZA II, Althanstraße 14, 1090 Vienna, Austria.

出版信息

World Allergy Organ J. 2019 May 9;12(5):100036. doi: 10.1016/j.waojou.2019.100036. eCollection 2019.

Abstract

BACKGROUND

It is recommended to position pollen monitoring stations on rooftop level to assure a large catchment area and to gain data that are representative for a regional scale. Herein, an investigation of the representativeness of pollen concentrations was performed for 20 pollen types in the pollen seasons 2015-2016 in Vienna for rooftop and ground level and was compared with weather data and for the first time with symptom data.

METHODS

The complete data set was analyzed with various statistical methods including Spearmen correlation, ANOVA, Kolmogorov-Smirnov test and logistic regression calculation: Odds ratio and Yule's Q values. Computational intelligence methods, namely Self Organizing Maps (SOMs) were employed that are capable of describing similarities and interdependencies in an effective way taking into account the U-matrix as well. The Random Forest algorithm was selected for modeling symptom data.

RESULTS

The investigation of the representativeness of pollen concentrations on rooftop and ground level concerns the progress of the season, the peak occurrences and absolute quantities. Most taxa examined showed similar patterns (e.g. ), while others showed differences in pollen concentrations exposure on different heights (e.g. the Poaceae family). Maximum temperature, mean temperature and humidity showed the highest influence among the weather parameters and daily pollen concentrations for the majority of taxa in both traps.

CONCLUSION

The rooftop trap was identified as the more adequate one when compared with the local symptom data. Results show that symptom data correlate more with pollen concentrations measured on rooftop than with those measured on ground level.

摘要

背景

建议将花粉监测站设置在屋顶高度,以确保有较大的集水区,并获取代表区域尺度的数据。在此,对2015 - 2016年维也纳花粉季节屋顶和地面20种花粉类型的花粉浓度代表性进行了调查,并与气象数据进行了比较,首次还与症状数据进行了比较。

方法

使用多种统计方法对完整数据集进行分析,包括斯皮尔曼相关性分析、方差分析、柯尔莫哥洛夫 - 斯米尔诺夫检验和逻辑回归计算:优势比和尤尔Q值。采用了计算智能方法,即自组织映射(SOM),该方法能够有效地描述相似性和相互依赖性,同时还考虑了U矩阵。选择随机森林算法对症状数据进行建模。

结果

对屋顶和地面花粉浓度代表性的调查涉及季节进展、峰值出现情况和绝对数量。大多数被检查的分类群显示出相似的模式(例如),而其他一些分类群在不同高度的花粉浓度暴露方面存在差异(例如禾本科)。在两个采样点,最高温度、平均温度和湿度对大多数分类群的每日花粉浓度影响最大。

结论

与当地症状数据相比,屋顶采样点被确定为更合适的采样点。结果表明,症状数据与屋顶测量的花粉浓度的相关性比与地面测量的花粉浓度的相关性更强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bd4/6514368/9fb0c39efdde/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验