文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在糖尿病视网膜病变筛查中的疗效:一项系统评价和荟萃分析。

The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis.

作者信息

Alqahtani Abdullah S, Alshareef Wasan M, Aljadani Hanan T, Hawsawi Wesal O, Shaheen Marya H

机构信息

Department of Surgery, Division of Ophthalmology, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia.

King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.

出版信息

Int J Retina Vitreous. 2025 Apr 22;11(1):48. doi: 10.1186/s40942-025-00670-9.


DOI:10.1186/s40942-025-00670-9
PMID:40264218
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12012971/
Abstract

BACKGROUND: To evaluate the efficacy of artificial intelligence (AI) in screening for diabetic retinopathy (DR) using fundus images and optical coherence tomography (OCT) in comparison to traditional screening methods. METHODS: This systematic review was registered with PROSPERO (ID: CRD42024560750). Systematic searches were conducted in PubMed Medline, Cochrane Central, ScienceDirect, and Web of Science using keywords such as "diabetic retinopathy," "screening," and "artificial intelligence." Only studies published in English from 2019 to July 22, 2024, were considered. We also manually reviewed the reference lists of relevant reviews. Two independent reviewers assessed the risk of bias using the QUADAS-2 tool, resolving disagreements through discussion with the principal investigator. Meta-analysis was performed using MetaDiSc software (version 1.4). To calculate combined sensitivity, specificity, summary receiver operating characteristic (SROC) plots, forest plots, and subgroup analyses were performed according to clinician type (ophthalmologists vs. retina specialists) and imaging modality (fundus images vs. fundus images + OCT). RESULTS: 18 studies were included. Meta-analysis showed that AI systems demonstrated superior diagnostic performance compared to doctors, with the pooled sensitivity, specificity, diagnostic odds ratio, and Cochrane Q index of the AI being 0.877, 0.906, 0.94, and 153.79 accordingly. The Fagan nomogram analysis further confirmed the strong diagnostic value of AI. Subgroup analyses revealed that factors like imaging modality, and doctor expertise can influence diagnostic performance. CONCLUSION: AI systems have demonstrated strong diagnostic performance in detecting diabetic retinopathy, with sensitivity and specificity comparable to or exceeding traditional clinicians.

摘要

背景:与传统筛查方法相比,评估人工智能(AI)利用眼底图像和光学相干断层扫描(OCT)筛查糖尿病视网膜病变(DR)的疗效。 方法:本系统评价在国际前瞻性系统评价注册库(PROSPERO,注册号:CRD42024560750)进行注册。在PubMed Medline、Cochrane Central、ScienceDirect和Web of Science中使用“糖尿病视网膜病变”“筛查”和“人工智能”等关键词进行系统检索。仅纳入2019年至2024年7月22日发表的英文研究。我们还手动查阅了相关综述的参考文献列表。两名独立评审员使用QUADAS-2工具评估偏倚风险,通过与主要研究者讨论解决分歧。使用MetaDiSc软件(版本1.4)进行Meta分析。为计算合并敏感性、特异性,绘制汇总接受者操作特征(SROC)曲线、森林图,并根据临床医生类型(眼科医生与视网膜专科医生)和成像方式(眼底图像与眼底图像+OCT)进行亚组分析。 结果:纳入18项研究。Meta分析表明,与医生相比,AI系统具有更高的诊断性能,AI的合并敏感性、特异性、诊断比值比和Cochrane Q指数分别为0.877、0.906、0.94和153.79。Fagan列线图分析进一步证实了AI的强大诊断价值。亚组分析显示,成像方式和医生专业知识等因素会影响诊断性能。 结论:AI系统在检测糖尿病视网膜病变方面具有强大的诊断性能,其敏感性和特异性与传统临床医生相当或更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/8ae3f902efd4/40942_2025_670_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/ee5a6f7cf52d/40942_2025_670_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/bc76e54affec/40942_2025_670_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/bba7522d3fc1/40942_2025_670_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/4469f2171c5b/40942_2025_670_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/f6ce7f0c81aa/40942_2025_670_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/9f8141cf9e7a/40942_2025_670_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/ff61c5830c85/40942_2025_670_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/8ae3f902efd4/40942_2025_670_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/ee5a6f7cf52d/40942_2025_670_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/bc76e54affec/40942_2025_670_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/bba7522d3fc1/40942_2025_670_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/4469f2171c5b/40942_2025_670_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/f6ce7f0c81aa/40942_2025_670_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/9f8141cf9e7a/40942_2025_670_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/ff61c5830c85/40942_2025_670_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/336d/12012971/8ae3f902efd4/40942_2025_670_Fig8_HTML.jpg

相似文献

[1]
The efficacy of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis.

Int J Retina Vitreous. 2025-4-22

[2]
Performance of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis of prospective studies.

Front Endocrinol (Lausanne). 2023

[3]
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.

Cochrane Database Syst Rev. 2015-1-7

[4]
Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.

Biomed Eng Online. 2022-7-20

[5]
Diagnostic Accuracy of IDX-DR for Detecting Diabetic Retinopathy: A Systematic Review and Meta-Analysis.

Am J Ophthalmol. 2025-5

[6]
Diagnostic Accuracy of Artificial Intelligence-Based Automated Diabetic Retinopathy Screening in Real-World Settings: A Systematic Review and Meta-Analysis.

Am J Ophthalmol. 2024-7

[7]
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.

Cochrane Database Syst Rev. 2011-7-6

[8]
Evaluation of Artificial Intelligence Algorithms for Diabetic Retinopathy Detection: Protocol for a Systematic Review and Meta-Analysis.

JMIR Res Protoc. 2024-5-27

[9]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[10]
Use of artificial intelligence with retinal imaging in screening for diabetes-associated complications: systematic review.

EClinicalMedicine. 2025-2-18

本文引用的文献

[1]
Artificial Intelligence and Diabetic Retinopathy: AI Framework, Prospective Studies, Head-to-head Validation, and Cost-effectiveness.

Diabetes Care. 2023-10-1

[2]
AI-Human Hybrid Workflow Enhances Teleophthalmology for the Detection of Diabetic Retinopathy.

Ophthalmol Sci. 2023-5-12

[3]
Performance of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis of prospective studies.

Front Endocrinol (Lausanne). 2023

[4]
Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment.

Ophthalmol Ther. 2023-6

[5]
Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologists' Dilated Examinations.

Ophthalmol Sci. 2022-9-30

[6]
Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.

Biomed Eng Online. 2022-7-20

[7]
The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy.

Front Med (Lausanne). 2022-5-16

[8]
Diabetic retinopathy screening in the emerging era of artificial intelligence.

Diabetologia. 2022-9

[9]
Cost-effectiveness of artificial intelligence screening for diabetic retinopathy in rural China.

BMC Health Serv Res. 2022-2-25

[10]
Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening.

J Clin Med. 2022-1-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索