Foster D M, Pavloudis Th, Kioseoglou J, Palmer R E
Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.
College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK.
Nat Commun. 2019 Jun 13;10(1):2583. doi: 10.1038/s41467-019-10713-z.
Although the changes in melting behaviour on the nanoscale have long attracted the interest of researchers, the mechanism by which nanoparticles melt remains an open problem. We report the direct observation, at atomic resolution, of surface melting in individual size-selected Au clusters (2-5 nm diameter) supported on carbon films, using an in situ heating stage in the aberration corrected scanning transmission electron microscope. At elevated temperatures the Au nanoparticles are found to form a solid core-liquid shell structure. The cluster surface melting temperatures, show evidence of size-dependent melting point suppression. The cluster core melting temperatures are significantly greater than predicted by existing models of free clusters. To explore the effect of the interaction between the clusters and the carbon substrate, we employ a very large-scale ab initio simulation approach to investigate the influence of the support. Theoretical results for surface and core melting points are in good agreement with experiment.
尽管纳米尺度上熔化行为的变化长期以来一直吸引着研究人员的兴趣,但纳米颗粒熔化的机制仍然是一个悬而未决的问题。我们报告了在像差校正扫描透射电子显微镜中使用原位加热台,在原子分辨率下对碳膜上单个尺寸选择的金团簇(直径2 - 5纳米)表面熔化的直接观察。在升高的温度下,发现金纳米颗粒形成了固核 - 液壳结构。团簇表面熔化温度显示出熔点抑制的尺寸依赖性证据。团簇核心熔化温度明显高于现有自由团簇模型的预测值。为了探索团簇与碳基底之间相互作用的影响,我们采用了一种非常大规模的从头算模拟方法来研究基底的影响。表面和核心熔点的理论结果与实验结果吻合良好。