Suppr超能文献

使用心房颤动或扑动心电图预测左心室射血分数降低:一项机器学习研究。

Prediction of reduced left ventricular ejection fraction using atrial fibrillation or flutter electrocardiograms: A machine-learning study.

作者信息

Kwon Soonil, Chung SooMin, Lee So-Ryoung, Kim Kwangsoo, Kim Junmo, Baek Dahyeon, Yang Hyun-Lim, Choi Eue-Keun, Oh Seil

机构信息

Division of Cardiology, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.

Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.

出版信息

Digit Health. 2025 Jan 17;11:20552076241311460. doi: 10.1177/20552076241311460. eCollection 2025 Jan-Dec.

Abstract

OBJECTIVE

Although the evaluation of left ventricular ejection fraction (LVEF) in patients with atrial fibrillation (AF) or atrial flutter (AFL) is crucial for appropriate medical management, the prediction of reduced LVEF (<50%) with AF/AFL electrocardiograms (ECGs) lacks evidence. This study aimed to investigate deep-learning approaches to predict reduced LVEF (<50%) in patients with AF/AFL ECGs and easily obtainable clinical information.

METHODS

Patients with 12-lead ECGs of AF/AFL and echocardiography were divided into those with LVEF <50% and ≥50%. A convolutional neural networks-based model customized to the study (AFibEFNet) and other deep-learning models were investigated. Electrocardiogram signals, ECG features, and clinical features (demographic information, comorbidities, blood cell counts, and blood test results) were collected for training. A hold-out test dataset was constructed using a different recruitment period. Five-fold cross-validation and calibration plots were used to evaluate performance.

RESULTS

A total of 15,683 patients were analyzed (mean age, 70.0 ± 11.7 years; 61.2% men), with 82.2% having LVEF ≥50% and 17.8% having LVEF < 50%. Among the learning models, the AFibEFNet outperformed other models regarding area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and F1-score. Using ECG signals alone, the AFibEFNet model predicted reduced LVEF with AUROC of 0.798 (95% confidence interval [CI], 0.767-0.829) and AUPRC of 0.508 (95% CI, 0.434-0.564). For the AFibEFNet model, additional training with ECG and clinical features significantly improved AUROC (0.816 vs. 0.798, = 0.04) and AUPRC (0.547 vs. 0.508, < 0.001). The AFibEFNet model primarily focused on the R-wave, QRS onset and offset, and T-wave in ECG signals.

CONCLUSIONS

Among the patients with AF/AFL, machine learning may predict reduced LVEF with 12-lead ECGs of AF/AFL.

摘要

目的

虽然评估心房颤动(AF)或心房扑动(AFL)患者的左心室射血分数(LVEF)对于恰当的医疗管理至关重要,但利用AF/AFL心电图(ECG)预测LVEF降低(<50%)缺乏证据。本研究旨在探讨深度学习方法,以根据AF/AFL心电图及易于获取的临床信息预测LVEF降低(<50%)。

方法

将有AF/AFL的12导联心电图及超声心动图检查的患者分为LVEF<50%和≥50%两组。研究了一种针对本研究定制的基于卷积神经网络的模型(AFibEFNet)及其他深度学习模型。收集心电图信号、心电图特征及临床特征(人口统计学信息、合并症、血细胞计数及血液检测结果)用于训练。使用不同的招募时间段构建一个留出检验数据集。采用五折交叉验证和校准图评估性能。

结果

共分析了15683例患者(平均年龄70.0±11.7岁;男性占61.2%),其中82.2%的患者LVEF≥50%,17.8%的患者LVEF<50%。在学习模型中,AFibEFNet在受试者工作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)及F1评分方面优于其他模型。仅使用心电图信号时,AFibEFNet模型预测LVEF降低的AUROC为0.798(95%置信区间[CI],0.767 - 0.829),AUPRC为0.508(95%CI,0.434 - 0.564)。对于AFibEFNet模型,使用心电图和临床特征进行额外训练可显著提高AUROC(0.816对0.798,P = 0.04)和AUPRC(0.547对0.508,P<0.001)。AFibEFNet模型主要关注心电图信号中的R波、QRS波起始和结束以及T波。

结论

在AF/AFL患者中,机器学习可通过AF/AFL的12导联心电图预测LVEF降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e54c/11748079/be73c5fd2811/10.1177_20552076241311460-fig1.jpg

相似文献

1
Prediction of reduced left ventricular ejection fraction using atrial fibrillation or flutter electrocardiograms: A machine-learning study.
Digit Health. 2025 Jan 17;11:20552076241311460. doi: 10.1177/20552076241311460. eCollection 2025 Jan-Dec.
3
Deep Learning of Electrocardiograms in Sinus Rhythm From US Veterans to Predict Atrial Fibrillation.
JAMA Cardiol. 2023 Dec 1;8(12):1131-1139. doi: 10.1001/jamacardio.2023.3701.
4
Characteristics and Outcomes of Concurrently Diagnosed New Rapid Atrial Fibrillation or Flutter and New Reduced Ejection Fraction.
Pacing Clin Electrophysiol. 2016 Dec;39(12):1394-1403. doi: 10.1111/pace.12981. Epub 2016 Dec 22.
7
Machine Learning-Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes.
Circ Arrhythm Electrophysiol. 2022 Aug;15(8):e010850. doi: 10.1161/CIRCEP.122.010850. Epub 2022 Jul 22.
9
Prediction of incident atrial fibrillation using deep learning, clinical models, and polygenic scores.
Eur Heart J. 2024 Dec 7;45(46):4920-4934. doi: 10.1093/eurheartj/ehae595.
10
Atrial fibrillation observed on surface ECG can be atrial flutter or atrial tachycardia.
J Electrocardiol. 2018 Nov-Dec;51(6S):S67-S71. doi: 10.1016/j.jelectrocard.2018.07.010. Epub 2018 Jul 17.

本文引用的文献

1
Machine Learning Risk Prediction for Incident Heart Failure in Patients With Atrial Fibrillation.
JACC Asia. 2022 Nov 1;2(6):706-716. doi: 10.1016/j.jacasi.2022.07.007. eCollection 2022 Nov.
2
Residual one-dimensional convolutional neural network for neuromuscular disorder classification from needle electromyography signals with explainability.
Comput Methods Programs Biomed. 2022 Nov;226:107079. doi: 10.1016/j.cmpb.2022.107079. Epub 2022 Aug 24.
3
Diagnostics: a major priority for the NHS.
Future Healthc J. 2022 Jul;9(2):133-137. doi: 10.7861/fhj.2022-0052.
4
Managing Atrial Fibrillation in Patients With Heart Failure and Reduced Ejection Fraction: A Scientific Statement From the American Heart Association.
Circ Arrhythm Electrophysiol. 2021 Jun;14(6):HAE0000000000000078. doi: 10.1161/HAE.0000000000000078. Epub 2021 Jun 15.
5
Artificial Intelligence-Augmented Electrocardiogram Detection of Left Ventricular Systolic Dysfunction in the General Population.
Mayo Clin Proc. 2021 Oct;96(10):2576-2586. doi: 10.1016/j.mayocp.2021.02.029. Epub 2021 Jun 10.
7
Artificial intelligence-enhanced electrocardiography in cardiovascular disease management.
Nat Rev Cardiol. 2021 Jul;18(7):465-478. doi: 10.1038/s41569-020-00503-2. Epub 2021 Feb 1.
8
Machine learning: at the heart of failure diagnosis.
Curr Opin Cardiol. 2021 Mar 1;36(2):227-233. doi: 10.1097/HCO.0000000000000833.
10
Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure.
Am Heart J. 2020 Nov;229:1-17. doi: 10.1016/j.ahj.2020.07.009. Epub 2020 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验