Suppr超能文献

分析低浓度细胞培养液中小金纳米粒子形成的复合物。

Analysis of complexes formed by small gold nanoparticles in low concentration in cell culture media.

机构信息

Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.

NanoLund, Lund University, Lund, Sweden.

出版信息

PLoS One. 2019 Jun 14;14(6):e0218211. doi: 10.1371/journal.pone.0218211. eCollection 2019.

Abstract

New nanomaterials are constantly developed with applications in everything from cosmetics to high tech electronics. Assessing their biological impact has been done by analysis of their adsorbed protein corona, in vitro cell assays, and larger scale ecotoxicological studies. This has proved to be a huge challenge due to the wide range of available nanomaterials and their unpredictable behaviour in different environments. Furthermore, the enormous number of experimental variables make comparisons difficult. Concentration is one of these variables and can vary greatly depending on the aim of the study. When analysing the protein corona, concentrations are often higher than in cell assays. Using a combination of complementary techniques, we have characterised 20 nm gold nanoparticles in a concentration level commonly used in cell studies. We compare their behaviour in a commonly used, protein rich medium and one protein poor medium over 24 hours. Under these conditions, the NPs were stable in protein rich environment but underwent gradual aggregation in protein poor medium. We characterise the biomolecular corona in both media. In protein poor medium, we can describe the often overlooked aggregation. The aggregates' morphology is confirmed by cryo-TEM. Finally, in the protein poor medium, by infrared spectroscopy, we have identified the amino acid arginine in the biomolecular corona which drives the aggregation.

摘要

新的纳米材料不断被开发出来,应用于从化妆品到高科技电子产品等各个领域。通过分析其吸附的蛋白质冠、体外细胞试验和更大规模的生态毒理学研究来评估它们的生物影响。由于可用的纳米材料种类繁多,并且在不同环境中具有不可预测的行为,因此这证明是一个巨大的挑战。此外,大量的实验变量使得比较变得困难。浓度就是其中一个变量,具体取决于研究的目的。在分析蛋白质冠时,浓度通常高于细胞试验。我们使用一系列互补技术,在细胞研究中常用的浓度水平下对 20nm 金纳米粒子进行了表征。我们比较了它们在一种常用的富含蛋白质的介质和一种蛋白质缺乏的介质中 24 小时的行为。在这些条件下,纳米粒子在富含蛋白质的环境中稳定,但在蛋白质缺乏的介质中逐渐聚集。我们在两种介质中都对生物分子冠进行了表征。在蛋白质缺乏的介质中,我们可以描述通常被忽视的聚集。通过冷冻透射电子显微镜确认了聚集物的形态。最后,通过红外光谱,我们在蛋白质缺乏的介质中鉴定出驱动聚集的生物分子冠中的氨基酸精氨酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6de/6568402/9a99d5592795/pone.0218211.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验