Suppr超能文献

用于免疫治疗设计的机器学习增强型T细胞新表位发现

Machine Learning-Enhanced T Cell Neoepitope Discovery for Immunotherapy Design.

作者信息

Martins Joana, Magalhães Carlos, Rocha Miguel, Osório Nuno S

机构信息

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.

ICVS/3B PT Government Associate Laboratory, Braga/Guimarães, Portugal.

出版信息

Cancer Inform. 2019 May 23;18:1176935119852081. doi: 10.1177/1176935119852081. eCollection 2019.

Abstract

Immune responses mediated by T cells are aimed at specific peptides, designated T cell epitopes, that are recognized when bound to human leukocyte antigen (HLA) molecules. The HLA genes are remarkably polymorphic in the human population allowing a broad and fine-tuned capacity to bind a wide array of peptide sequences. Polymorphisms might generate neoepitopes by impacting the HLA-peptide interaction and potentially alter the level and type of generated T cell responses. Multiple algorithms and tools based on machine learning (ML) have been implemented and are able to predict HLA-peptide binding affinity with considerable accuracy. Challenges in this field include the availability of adequate epitope datasets for training and benchmarking and the development of fully integrated pipelines going from next-generation sequencing to neoepitope prediction and quality analysis metrics. Effectively predicting neoepitopes from data is a demanding task that has been facilitated by ML and will be of great value for the future of personalized immunotherapies against cancer and other diseases.

摘要

由T细胞介导的免疫反应针对特定的肽段,即所谓的T细胞表位,这些肽段在与人白细胞抗原(HLA)分子结合时被识别。HLA基因在人类群体中具有显著的多态性,使其具有广泛且可微调的能力来结合各种各样的肽序列。多态性可能通过影响HLA-肽相互作用产生新表位,并有可能改变所产生的T细胞反应的水平和类型。基于机器学习(ML)的多种算法和工具已经得到应用,并且能够相当准确地预测HLA-肽结合亲和力。该领域面临的挑战包括用于训练和基准测试的足够表位数据集的可用性,以及从下一代测序到新表位预测和质量分析指标的完全集成流程的开发。从数据中有效预测新表位是一项艰巨的任务,机器学习对此提供了便利,并且对于未来针对癌症和其他疾病的个性化免疫疗法具有巨大价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8b/6535895/f315187adcdf/10.1177_1176935119852081-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验