School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea.
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
Sci Adv. 2019 Jun 12;5(6):eaav1697. doi: 10.1126/sciadv.aav1697. eCollection 2019 Jun.
Submicrometer elasticity of double-stranded DNA (dsDNA) governs nanoscale bending of DNA segments and their interactions with proteins. Single-molecule force spectroscopy, including magnetic tweezers (MTs), is an important tool for studying DNA mechanics. However, its application to short DNAs under 1 μm is limited. We developed an MT-based method for precise force-extension measurements in the 100-nm regime that enables in situ correction of the error in DNA extension measurement, and normalizes the force variability across beads by exploiting DNA hairpins. The method reduces the lower limit of tractable dsDNA length down to 198 base pairs (bp) (67 nm), an order-of-magnitude improvement compared to conventional tweezing experiments. Applying this method and the finite worm-like chain model we observed an essentially constant persistence length across the chain lengths studied (198 bp to 10 kbp), which steeply depended on GC content and methylation. This finding suggests a potential sequence-dependent mechanism for short-DNA elasticity.
双链 DNA(dsDNA)的亚微米级弹性决定了 DNA 片段的纳米级弯曲及其与蛋白质的相互作用。单分子力谱学,包括磁镊(MTs),是研究 DNA 力学的重要工具。然而,它在 1μm 以下的短 DNA 中的应用受到限制。我们开发了一种基于 MT 的方法,用于在 100nm 范围内进行精确的力-延伸测量,该方法能够原位校正 DNA 延伸测量中的误差,并通过利用 DNA 发夹来归一化珠间力的可变性。该方法将可处理的 dsDNA 长度下限降低到 198 个碱基对(bp)(67nm),与传统的镊实验相比,提高了一个数量级。应用该方法和有限的蠕虫链模型,我们观察到在研究的链长范围内(198bp 至 10kbp),几乎保持不变的持久长度,其强烈依赖于 GC 含量和甲基化。这一发现表明,短 DNA 弹性可能存在序列依赖性机制。