Dulin David, Cui Tao Ju, Cnossen Jelmer, Docter Margreet W, Lipfert Jan, Dekker Nynke H
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
Biophys J. 2015 Nov 17;109(10):2113-25. doi: 10.1016/j.bpj.2015.10.018.
The observation of biological processes at the molecular scale in real time requires high spatial and temporal resolution. Magnetic tweezers are straightforward to implement, free of radiation or photodamage, and provide ample multiplexing capability, but their spatiotemporal resolution has lagged behind that of other single-molecule manipulation techniques, notably optical tweezers and AFM. Here, we present, to our knowledge, a new high-resolution magnetic tweezers apparatus. We systematically characterize the achievable spatiotemporal resolution for both incoherent and coherent light sources, different types and sizes of beads, and different types and lengths of tethered molecules. Using a bright coherent laser source for illumination and tracking at 6 kHz, we resolve 3 Å steps with a 1 s period for surface-melted beads and 5 Å steps with a 0.5 s period for double-stranded-dsDNA-tethered beads, in good agreement with a model of stochastic bead motion in the magnetic tweezers. We demonstrate how this instrument can be used to monitor the opening and closing of a DNA hairpin on millisecond timescales in real time, together with attendant changes in the hairpin dynamics upon the addition of deoxythymidine triphosphate. Our approach opens up the possibility of observing biological events at submillisecond timescales with subnanometer resolution using camera-based detection.
在分子尺度实时观察生物过程需要高空间和时间分辨率。磁镊易于实现,无辐射或光损伤,并具有充分的多路复用能力,但其时空分辨率落后于其他单分子操纵技术,特别是光镊和原子力显微镜。在此,据我们所知,我们展示了一种新型高分辨率磁镊装置。我们系统地表征了非相干和相干光源、不同类型和尺寸的珠子以及不同类型和长度的 tethered 分子可实现的时空分辨率。使用明亮的相干激光源以 6 kHz 进行照明和跟踪,对于表面熔化的珠子,我们以 1 秒的周期分辨出 3 Å 的步长,对于双链 DNA tethered 的珠子,以 0.5 秒的周期分辨出 5 Å 的步长,这与磁镊中随机珠子运动的模型高度吻合。我们展示了该仪器如何用于实时监测 DNA 发夹在毫秒时间尺度上的打开和关闭,以及添加三磷酸脱氧胸苷后发夹动力学的伴随变化。我们的方法开辟了使用基于相机的检测以亚纳米分辨率在亚毫秒时间尺度上观察生物事件的可能性。