Suppr超能文献

优化急性脑卒中预后预测模型:广义回归神经网络与逻辑回归的比较。

Optimizing acute stroke outcome prediction models: Comparison of generalized regression neural networks and logistic regressions.

机构信息

Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Centre, Shenzhen, China.

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China.

出版信息

PLoS One. 2022 May 11;17(5):e0267747. doi: 10.1371/journal.pone.0267747. eCollection 2022.

Abstract

BACKGROUND

Generalized regression neural network (GRNN) and logistic regression (LR) are extensively used in the medical field; however, the better model for predicting stroke outcome has not been established. The primary goal of this study was to compare the accuracies of GRNN and LR models to identify the most optimal model for the prediction of acute stroke outcome, as well as explore useful biomarkers for predicting the prognosis of acute stroke patients.

METHOD

In a single-center study, 216 (80% for the training set and 20% for the test set) acute stroke patients admitted to the Shenzhen Second People's Hospital between December 2019 to June 2021 were retrospectively recruited. The functional outcomes of the patients were measured using Barthel Index (BI) on discharge. A training set was used to optimize the GRNN and LR models. The test set was utilized to validate and compare the performances of GRNN and LR in predicting acute stroke outcome based on the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, and the Kappa value.

RESULT

The LR analysis showed that age, the National Institute Health Stroke Scale score, BI index, hemoglobin, and albumin were independently associated with stroke outcome. After validating in test set using these variables, we found that the GRNN model showed a better performance based on AUROC (0.931 vs 0.702), sensitivity (0.933 vs 0.700), specificity (0.889 vs 0.722), accuracy (0.896 vs 0.729), and the Kappa value (0.775 vs 0.416) than the LR model.

CONCLUSION

Overall, the GRNN model demonstrated superior performance to the LR model in predicting the prognosis of acute stroke patients. In addition to its advantage in not affected by implicit interactions and complex relationship in the data. Thus, we suggested that GRNN could be served as the optimal statistical model for acute stroke outcome prediction. Simultaneously, prospective validation based on more variables of the GRNN model for the prediction is required in future studies.

摘要

背景

广义回归神经网络(GRNN)和逻辑回归(LR)在医学领域被广泛应用;然而,预测中风结局的更佳模型尚未建立。本研究的主要目的是比较 GRNN 和 LR 模型的准确性,以确定预测急性中风结局的更佳模型,并探索用于预测急性中风患者预后的有用生物标志物。

方法

在一项单中心研究中,回顾性招募了 2019 年 12 月至 2021 年 6 月期间入住深圳市第二人民医院的 216 名(80%用于训练集,20%用于测试集)急性中风患者。患者的功能结局采用出院时的巴氏指数(BI)进行测量。使用训练集优化 GRNN 和 LR 模型。使用测试集验证和比较 GRNN 和 LR 基于受试者工作特征曲线下面积(AUROC)、准确性、敏感度和 Kappa 值预测急性中风结局的性能。

结果

LR 分析表明,年龄、国立卫生研究院中风量表评分、BI 指数、血红蛋白和白蛋白与中风结局独立相关。在用这些变量在测试集验证后,我们发现 GRNN 模型在 AUROC(0.931 对 0.702)、敏感度(0.933 对 0.700)、特异性(0.889 对 0.722)、准确性(0.896 对 0.729)和 Kappa 值(0.775 对 0.416)方面的表现优于 LR 模型。

结论

总的来说,GRNN 模型在预测急性中风患者的预后方面表现优于 LR 模型。除了不受数据中隐含交互作用和复杂关系的影响之外。因此,我们建议 GRNN 可作为预测急性中风结局的更佳统计模型。未来的研究需要基于更多变量对 GRNN 模型进行预测的前瞻性验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/990f/9094516/af554caa08f3/pone.0267747.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验