Vu Bryan N, Bi Jianzhao, Wang Wenhao, Huff Amy, Kondragunta Shobha, Liu Yang
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States.
Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, United States.
Remote Sens Environ. 2022 Mar 15;271. doi: 10.1016/j.rse.2022.112890. Epub 2022 Jan 25.
Wildland fire smoke contains large amounts of PM that can traverse tens to hundreds of kilometers, resulting in significant deterioration of air quality and excess mortality and morbidity in downwind regions. Estimating PM levels while considering the impact of wildfire smoke has been challenging due to the lack of ground monitoring coverage near the smoke plumes. We aim to estimate total PM concentration during the Camp Fire episode, the deadliest wildland fire in California history. Our random forest (RF) model combines calibrated low-cost sensor data (PurpleAir) with regulatory monitor measurements (Air Quality System, AQS) to bolster ground observations, Geostationary Operational Environmental Satellite-16 (GOES-16)'s high temporal resolution to achieve hourly predictions, and oversampling techniques (Synthetic Minority Oversampling Technique, SMOTE) to reduce model underestimation at high PM levels. In addition, meteorological fields at 3 km resolution from the High-Resolution Rapid Refresh model and land use variables were also included in the model. Our AQS-only model achieved an out of bag (OOB) R (RMSE) of 0.84 (12.00 μg/m) and spatial and temporal cross-validation (CV) R (RMSE) of 0.74 (16.28 μg/m) and 0.73 (16.58 μg/m), respectively. Our AQS + Weighted PurpleAir Model achieved OOB R (RMSE) of 0.86 (9.52 μg/m) and spatial and temporal CV R (RMSE) of 0.75 (14.93 μg/m) and 0.79 (11.89 μg/m), respectively. Our AQS + Weighted PurpleAir + SMOTE Model achieved OOB R (RMSE) of 0.92 (10.44 μg/m) and spatial and temporal CV R (RMSE) of 0.84 (12.36 μg/m) and 0.85 (14.88 μg/m), respectively. Hourly predictions from our model may aid in epidemiological investigations of intense and acute exposure to PM during the Camp Fire episode.
野火烟雾中含有大量可传输数十至数百公里的细颗粒物(PM),导致空气质量显著恶化,并使下风地区的死亡率和发病率上升。由于烟羽附近缺乏地面监测覆盖,在考虑野火烟雾影响的同时估算细颗粒物水平一直具有挑战性。我们旨在估算加州历史上最致命的野火——营火事件期间的总细颗粒物浓度。我们的随机森林(RF)模型将经过校准的低成本传感器数据(PurpleAir)与监管监测测量数据(空气质量系统,AQS)相结合,以加强地面观测;利用地球静止业务环境卫星-16(GOES-16)的高时间分辨率实现每小时预测,并采用过采样技术(合成少数过采样技术,SMOTE)来减少模型在高细颗粒物水平下的低估。此外,来自高分辨率快速刷新模型的3公里分辨率气象场和土地利用变量也被纳入模型。我们仅使用AQS的模型的袋外(OOB)R(均方根误差,RMSE)为0.84(12.00微克/立方米),空间和时间交叉验证(CV)的R(RMSE)分别为0.74(16.28微克/立方米)和0.73(16.58微克/立方米)。我们的AQS + 加权PurpleAir模型的OOB R(RMSE)为0.86(9.52微克/立方米),空间和时间CV的R(RMSE)分别为0.75(14.93微克/立方米)和0.79(11.89微克/立方米)。我们的AQS + 加权PurpleAir + SMOTE模型的OOB R(RMSE)为0.92(10.44微克/立方米),空间和时间CV的R(RMSE)分别为0.84(12.36微克/立方米)和0.85(14.88微克/立方米)。我们模型的每小时预测结果可能有助于对营火事件期间细颗粒物的强烈和急性暴露进行流行病学调查。