Grinblat Gustavo, Nielsen Michael P, Dichtl Paul, Li Yi, Oulton Rupert F, Maier Stefan A
The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK.
Departamento de Física, FCEN, IFIBA-CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina.
Sci Adv. 2019 Jun 14;5(6):eaaw3262. doi: 10.1126/sciadv.aaw3262. eCollection 2019 Jun.
Gallium phosphide (GaP) is one of the few available materials with strong optical nonlinearity and negligible losses in the visible (λ > 450 nm) and near-infrared regime. In this work, we demonstrate that a GaP film can generate sub-30-fs (full width at half maximum) transmission modulation of up to ~70% in the 600- to 1000-nm wavelength range. Nonlinear simulations using parameters measured by the -scan approach indicate that the transmission modulation arises from the optical Kerr effect and two-photon absorption. Because of the absence of linear absorption, no slower free-carrier contribution is detected. These findings place GaP as a promising ultrafast material for all-optical switching at modulation speeds of up to 20 THz.
磷化镓(GaP)是少数几种在可见光(λ>450 nm)和近红外波段具有强光学非线性且损耗可忽略不计的可用材料之一。在这项工作中,我们证明了GaP薄膜在600至1000 nm波长范围内可以产生高达约70%的亚30飞秒(半高全宽)传输调制。使用通过z扫描方法测量的参数进行的非线性模拟表明,传输调制源于光学克尔效应和双光子吸收。由于不存在线性吸收,未检测到较慢的自由载流子贡献。这些发现使GaP成为一种有前途的超快材料,可用于高达20 THz调制速度的全光开关。