人工智能在利用蛋白质p53进行癌症检测中的作用:综述

Role of artificial intelligence in cancer detection using protein p53: A Review.

作者信息

Patil Manisha R, Bihari Anand

机构信息

School of Computer Science Engineering and Information System, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

Mol Biol Rep. 2024 Dec 11;52(1):46. doi: 10.1007/s11033-024-10051-4.

Abstract

Normal cell development and prevention of tumor formation rely on the tumor-suppressor protein p53. This crucial protein is produced from the Tp53 gene, which encodes the p53 protein. The p53 protein plays a vital role in regulating cell growth, DNA repair, and apoptosis (programmed cell death), thereby maintaining the integrity of the genome and preventing the formation of tumors. Since p53 was discovered 43 years ago, many researchers have clarified its functions in the development of tumors. With the support of the protein p53 and targeted artificial intelligence modeling, it will be possible to detect cancer and tumor activity at an early stage. This will open up new research opportunities. In this review article, a comprehensive analysis was conducted on different machine learning techniques utilized in conjunction with the protein p53 to predict and speculate cancer. The study examined the types of data incorporated and evaluated the performance of these techniques. The aim was to provide a thorough understanding of the effectiveness of machine learning in predicting and speculating cancer using the protein p53.

摘要

正常细胞发育和肿瘤形成的预防依赖于肿瘤抑制蛋白p53。这种关键蛋白由Tp53基因产生,该基因编码p53蛋白。p53蛋白在调节细胞生长、DNA修复和细胞凋亡(程序性细胞死亡)中起着至关重要的作用,从而维持基因组的完整性并防止肿瘤形成。自43年前发现p53以来,许多研究人员已经阐明了它在肿瘤发展中的功能。在蛋白质p53和靶向人工智能建模的支持下,将有可能在早期阶段检测癌症和肿瘤活动。这将开辟新的研究机会。在这篇综述文章中,对与蛋白质p53结合使用的不同机器学习技术进行了全面分析,以预测和推测癌症。该研究检查了纳入的数据类型并评估了这些技术的性能。目的是全面了解使用蛋白质p53进行机器学习在预测和推测癌症方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索