Suppr超能文献

使用系统药理学模型对转移性乳腺癌中抗CTLA-4和抗PD-L1免疫疗法进行临床试验模拟。

simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model.

作者信息

Wang Hanwen, Milberg Oleg, Bartelink Imke H, Vicini Paolo, Wang Bing, Narwal Rajesh, Roskos Lorin, Santa-Maria Cesar A, Popel Aleksander S

机构信息

Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.

Department of Medicine, University of California, San Francisco, CA, USA.

出版信息

R Soc Open Sci. 2019 May 22;6(5):190366. doi: 10.1098/rsos.190366. eCollection 2019 May.

Abstract

The low response rate of immune checkpoint blockade in breast cancer has highlighted the need for predictive biomarkers to identify responders. While a number of clinical trials are ongoing, testing all possible combinations is not feasible. In this study, a quantitative systems pharmacology model is built to integrate immune-cancer cell interactions in patients with breast cancer, including central, peripheral, tumour-draining lymph node (TDLN) and tumour compartments. The model can describe the immune suppression and evasion in both TDLN and the tumour microenvironment due to checkpoint expression, and mimic the tumour response to checkpoint blockade therapy. We investigate the relationship between the tumour response to checkpoint blockade therapy and composite tumour burden, PD-L1 expression and antigen intensity, including their individual and combined effects on the immune system, using model-based simulations. The proposed model demonstrates the potential to make predictions of tumour response of individual patients given sufficient clinical measurements, and provides a platform that can be further adapted to other types of immunotherapy and their combination with molecular-targeted therapies. The patient predictions demonstrate how this systems pharmacology model can be used to individualize immunotherapy treatments. When appropriately validated, these approaches may contribute to optimization of breast cancer treatment.

摘要

免疫检查点阻断在乳腺癌中的低应答率凸显了寻找预测生物标志物以识别应答者的必要性。虽然多项临床试验正在进行,但测试所有可能的组合并不可行。在本研究中,构建了一个定量系统药理学模型,以整合乳腺癌患者体内免疫细胞与癌细胞的相互作用,包括中枢、外周、肿瘤引流淋巴结(TDLN)和肿瘤微环境。该模型可以描述由于检查点表达导致的TDLN和肿瘤微环境中的免疫抑制和逃逸,并模拟肿瘤对检查点阻断疗法的反应。我们使用基于模型的模拟方法,研究肿瘤对检查点阻断疗法的反应与复合肿瘤负荷、PD-L1表达和抗原强度之间的关系,包括它们对免疫系统的单独和联合影响。所提出的模型表明,在有足够临床测量数据的情况下,有可能对个体患者的肿瘤反应进行预测,并提供了一个可进一步适用于其他类型免疫疗法及其与分子靶向疗法联合应用的平台。患者预测展示了这种系统药理学模型如何用于个性化免疫治疗。经过适当验证后,这些方法可能有助于优化乳腺癌治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fff1/6549962/89a7a3dfbbe2/rsos190366-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验