Suppr超能文献

使用协变量信息因子得分估计来恢复预测变量与标准变量的关系。

Recovering Predictor-Criterion Relations Using Covariate-Informed Factor Score Estimates.

作者信息

Curran Patrick J, Cole Veronica T, Bauer Daniel J, Rothenberg W Andrew, Hussong Andrea M

机构信息

University of North Carolina at Chapel Hill.

出版信息

Struct Equ Modeling. 2018;25(6):860-875. doi: 10.1080/10705511.2018.1473773. Epub 2018 Jun 12.

Abstract

Although it is currently best-practice to directly model latent factors whenever feasible, there remain many situations in which this approach is not tractable. Recent advances in covariate-informed factor score estimation can be used to provide manifest scores that are used in second-stage analysis, but these are currently understudied. Here we extend our prior work on factor score recovery to examine the use of factor score estimates as predictors both in the presence and absence of the same covariates that were used in score estimation. Results show that whereas the relation between the factor score estimates and the criterion are typically well recovered, substantial bias and increased variability is evident in the covariate effects themselves. Importantly, using covariate-informed factor score estimates substantially, and often wholly, mitigates these biases. We conclude with implications for future research and recommendations for the use of factor score estimates in practice.

摘要

尽管目前只要可行就直接对潜在因素进行建模是最佳实践方法,但仍有许多情况使得这种方法难以处理。协变量信息因子得分估计的最新进展可用于提供在第二阶段分析中使用的显式得分,但目前对这些得分的研究还不够充分。在这里,我们扩展了我们之前关于因子得分恢复的工作,以检验在存在和不存在用于得分估计的相同协变量的情况下,将因子得分估计用作预测变量的情况。结果表明,虽然因子得分估计与标准之间的关系通常能很好地恢复,但协变量效应本身存在明显的偏差和变异性增加。重要的是,大量使用且通常是完全使用协变量信息因子得分估计可以减轻这些偏差。我们最后讨论了对未来研究的启示以及在实践中使用因子得分估计的建议。

相似文献

1
Recovering Predictor-Criterion Relations Using Covariate-Informed Factor Score Estimates.
Struct Equ Modeling. 2018;25(6):860-875. doi: 10.1080/10705511.2018.1473773. Epub 2018 Jun 12.
2
Improving Factor Score Estimation Through the Use of Observed Background Characteristics.
Struct Equ Modeling. 2016;23(6):827-844. doi: 10.1080/10705511.2016.1220839. Epub 2016 Sep 9.
4
An introduction to the full random effects model.
CPT Pharmacometrics Syst Pharmacol. 2022 Feb;11(2):149-160. doi: 10.1002/psp4.12741. Epub 2022 Jan 4.
5
The Comparison of Latent Variable Propensity Score Models to Traditional Propensity Score Models under Conditions of Covariate Unreliability.
Multivariate Behav Res. 2020 Jul-Aug;55(4):625-646. doi: 10.1080/00273171.2019.1663136. Epub 2019 Sep 18.
6
Design of pharmacokinetic studies for latent covariates.
J Pharmacokinet Pharmacodyn. 2012 Feb;39(1):87-97. doi: 10.1007/s10928-011-9231-3. Epub 2011 Dec 10.
9
Sources of Error in IRT Trait Estimation.
Appl Psychol Meas. 2018 Jul;42(5):359-375. doi: 10.1177/0146621617733955. Epub 2017 Oct 6.

引用本文的文献

2
Practical Implications of Sum Scores Being Psychometrics' Greatest Accomplishment.
Psychometrika. 2024 Dec;89(4):1148-1169. doi: 10.1007/s11336-024-09988-z. Epub 2024 Jul 20.
3
Systematic Integration of Multi-Informant Externalizing Ratings in Clinical Settings.
Res Child Adolesc Psychopathol. 2024 Apr;52(4):635-644. doi: 10.1007/s10802-023-01119-z. Epub 2023 Oct 3.
7
Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data Analysis: A Tutorial.
Struct Equ Modeling. 2023;30(1):149-164. doi: 10.1080/10705511.2022.2070753. Epub 2022 May 23.
8
Informing Harmonization Decisions in Integrative Data Analysis: Exploring the Measurement Multiverse.
Prev Sci. 2023 Nov;24(8):1595-1607. doi: 10.1007/s11121-022-01466-1. Epub 2022 Nov 28.
9
Psychometric properties of sum scores and factor scores differ even when their correlation is 0.98: A response to Widaman and Revelle.
Behav Res Methods. 2023 Dec;55(8):4269-4290. doi: 10.3758/s13428-022-02016-x. Epub 2022 Nov 17.
10
Estimation of Latent Variable Scores with Multiple Group Item Response Models: Implications for Integrative Data Analysis.
Struct Equ Modeling. 2020;27(6):931-941. doi: 10.1080/10705511.2020.1724113. Epub 2020 Feb 27.

本文引用的文献

2
Improving Factor Score Estimation Through the Use of Observed Background Characteristics.
Struct Equ Modeling. 2016;23(6):827-844. doi: 10.1080/10705511.2016.1220839. Epub 2016 Sep 9.
3
Measuring Latent Quantities.
Psychometrika. 2011 Oct;76(4):511-36. doi: 10.1007/s11336-011-9223-7.
4
A more general model for testing measurement invariance and differential item functioning.
Psychol Methods. 2017 Sep;22(3):507-526. doi: 10.1037/met0000077. Epub 2016 Jun 6.
6
Design and Analysis of Monte Carlo Experiments: Attacking the Conventional Wisdom.
Multivariate Behav Res. 2000 Apr 1;35(2):137-67. doi: 10.1207/S15327906MBR3502_1.
7
There's more than one way to conduct a replication study: Beyond statistical significance.
Psychol Methods. 2016 Mar;21(1):1-12. doi: 10.1037/met0000051. Epub 2015 Jul 27.
9
A Moderated Nonlinear Factor Model for the Development of Commensurate Measures in Integrative Data Analysis.
Multivariate Behav Res. 2014 Jun;49(3):214-231. doi: 10.1080/00273171.2014.889594.
10
Quantifying 'problematic' DIF within an IRT framework: application to a cancer stigma index.
Qual Life Res. 2015 Jan;24(1):95-103. doi: 10.1007/s11136-013-0540-4. Epub 2013 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验