Suppr超能文献

协方差结构模型中的无症状独立性与可分性:对设定误差、功效及模型修正的影响

Asymptomatic Independence and Separability in Convariance Structure Models: Implications for Specification Error, Power, and Model Modification.

作者信息

Kaplan D, Wenger R N

出版信息

Multivariate Behav Res. 1993 Oct 1;28(4):467-82. doi: 10.1207/s15327906mbr2804_4.

Abstract

This article presents a didactic discussion on the role of asymptotically independent test statistics and separable hypotheses as they pertain to issues of specification error, power, and model modification in the covariance structure modeling framework. Specifically, it is shown that when restricting two parameter estimates on the basis of the multivariate Wald test, the condition of asymptotic independence is necessary but not sufficient for the univariate Wald test statistics to sum to the multivariate Wald test. Instead, what is required is mutual asymptotic independence (MAI) among the univariate tests. This result generalizes to sets of multivariate tests as well. When MA1 is lacking, hypotheses can exhibit transitive relationships. It is also shown that the pattern of zero and non-zero elements of the covariance matrix of the estimates are indicative of mutually asymptotically independent test statistics, separable and transitive hypotheses. The concepts of MAI, separability, and transitivity serve as an explanatory framework for how specification errors are propagated through systems of equations and how power analyses are differentially affected by specification errors of the same magnitude. A small population study supports the major findings of this article. The question of univariate versus multivariate sequential model modification is also addressed. We argue that multivariate sequential model modification strategies do not take into account the typical lack of MA1 thus inadvertently misleading substantive investigators. Instead, a prudent approach favors univariate sequential model modification.

摘要

本文对渐近独立检验统计量和可分离假设的作用进行了教学式讨论,这些内容与协方差结构建模框架中的设定误差、功效和模型修正问题相关。具体而言,研究表明,在基于多元 Wald 检验限制两个参数估计时,渐近独立条件对于单变量 Wald 检验统计量之和等于多元 Wald 检验而言是必要但不充分的。相反,单变量检验之间需要相互渐近独立(MAI)。该结果同样适用于多元检验集。当缺乏 MAI 时,假设可能呈现传递关系。研究还表明,估计量协方差矩阵的零元素和非零元素模式表明了相互渐近独立的检验统计量、可分离和传递假设。MAI、可分离性和传递性的概念为设定误差如何通过方程组传播以及相同量级的设定误差如何对功效分析产生不同影响提供了一个解释框架。一项小规模总体研究支持了本文的主要发现。本文还讨论了单变量与多变量顺序模型修正的问题。我们认为,多变量顺序模型修正策略没有考虑到通常缺乏 MAI 的情况,从而无意中误导了实证研究人员。相反,谨慎的方法更倾向于单变量顺序模型修正。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验