Lefevre Camille, Panthu Baptiste, Naville Danielle, Guibert Sylvie, Pinteur Claudie, Elena-Herrmann Bénédicte, Vidal Hubert, Rautureau Gilles J P, Mey Anne
Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69921 Oullins Cedex, France.
Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins Cedex, France.
Stem Cells Int. 2019 May 14;2019:9323864. doi: 10.1155/2019/9323864. eCollection 2019.
White adipose tissues are functionally heterogeneous and differently manage the excess of energy supply. While the expansion of subcutaneous adipose tissues (SAT) is protective in obesity, that of visceral adipose tissues (VAT) correlates with the emergence of metabolic diseases. Maintained in fat pads throughout life, adipose stem cells (ASC) are mesenchymal-like stem cells with adipogenesis and multipotent differentiation potential. ASC from distinct fat pads have long been reported to present distinct proliferation and differentiation potentials that are maintained in culture, yet the origins of these intrinsic differences are still unknown. Metabolism is central to stem cell fate decision in line with environmental changes. In this study, we performed high-resolution nuclear magnetic resonance (NMR) metabolomic analyses of ASC culture supernatants in order to characterize their metabolic phenotype in culture. We identified and quantified 29 ASC exometabolites and evaluated their consumption or secretion over 72 h of cell culture. Both ASC used glycolysis and mitochondrial metabolism, as evidenced by the high secretions of lactate and citrate, respectively, but V-ASC mostly used glycolysis. By varying the composition of the cell culture medium, we showed that glutaminolysis, rather than glycolysis, supported the secretion of pyruvate, alanine, and citrate, evidencing a peculiar metabolism in ASC cells. The comparison of the two types of ASC in glutamine-free culture conditions also revealed the role of glutaminolysis in the limitation of pyruvate routing towards the lactate synthesis, in S-ASC but not in V-ASC. Altogether, our results suggest a difference between depots in the capacity of ASC mitochondria to assimilate pyruvate, with probable consequences on their differentiation potential in pathways requiring an increased mitochondrial activity. These results highlight a pivotal role of metabolic mechanisms in the discrimination between ASC and provide new perspectives in the understanding of their functional differences.
白色脂肪组织在功能上具有异质性,对能量供应过剩的处理方式也有所不同。虽然皮下脂肪组织(SAT)的扩张在肥胖症中具有保护作用,但内脏脂肪组织(VAT)的扩张与代谢性疾病的出现相关。脂肪干细胞(ASC)终生存在于脂肪垫中,是具有成脂能力和多能分化潜能的间充质样干细胞。长期以来,人们一直报道来自不同脂肪垫的ASC具有不同的增殖和分化潜能,并且这些潜能在培养过程中得以维持,但其内在差异的起源仍然未知。新陈代谢是干细胞根据环境变化决定命运的核心。在本研究中,我们对ASC培养上清液进行了高分辨率核磁共振(NMR)代谢组学分析,以表征其在培养中的代谢表型。我们鉴定并定量了29种ASC胞外代谢物,并评估了它们在72小时细胞培养过程中的消耗或分泌情况。两种ASC都利用糖酵解和线粒体代谢,分别通过乳酸和柠檬酸的高分泌得以证明,但V-ASC主要利用糖酵解。通过改变细胞培养基的成分,我们发现谷氨酰胺分解而非糖酵解支持丙酮酸、丙氨酸和柠檬酸的分泌,这表明ASC细胞具有独特的代谢。在无谷氨酰胺培养条件下对两种类型ASC的比较还揭示了谷氨酰胺分解在限制丙酮酸向乳酸合成途径转化中的作用,在S-ASC中存在这种作用,而在V-ASC中则不存在。总之,我们的结果表明不同脂肪库中ASC线粒体同化丙酮酸的能力存在差异,这可能对它们在需要增加线粒体活性的途径中的分化潜能产生影响。这些结果突出了代谢机制在区分ASC中的关键作用,并为理解它们的功能差异提供了新的视角。