Suppr超能文献

人类内源性代谢组作为药物发现的药理学基线。

The human endogenous metabolome as a pharmacology baseline for drug discovery.

机构信息

Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, 08003 Barcelona, Catalonia, Spain.

Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA; UNM Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

Drug Discov Today. 2019 Sep;24(9):1806-1820. doi: 10.1016/j.drudis.2019.06.007. Epub 2019 Jun 19.

Abstract

We have limited understanding of the variation in in vitro affinities of drugs for their targets. An analysis of a highly curated set of 815 interactions between 566 drugs and 129 primary targets reveals that 71% of drug-target affinities have values above that of the corresponding endogenous ligand, 96% of them fitting within a range of two orders of magnitude. Our findings suggest that the evolutionary optimised affinity of endogenous ligands for their native proteins can serve as a baseline for the primary pharmacology of drugs. We show that the degree of off-target selectivity and safety risks of drugs derived from their secondary pharmacology depend very much on that baseline. Thus, we propose a new approach for estimating safety margins.

摘要

我们对药物与其靶点的体外亲和力的变化了解有限。对一组经过精心筛选的 566 种药物与 129 个主要靶点之间的 815 个相互作用进行分析,结果表明 71%的药物-靶点亲和力值高于相应的内源性配体,其中 96%的亲和力值在两个数量级的范围内。我们的研究结果表明,内源性配体与天然蛋白的进化优化亲和力可以作为药物主要药理学的基准。我们表明,药物的次要药理学衍生的药物的脱靶选择性和安全风险程度在很大程度上取决于该基准。因此,我们提出了一种估计安全裕度的新方法。

相似文献

1
The human endogenous metabolome as a pharmacology baseline for drug discovery.人类内源性代谢组作为药物发现的药理学基线。
Drug Discov Today. 2019 Sep;24(9):1806-1820. doi: 10.1016/j.drudis.2019.06.007. Epub 2019 Jun 19.
2
Anticipating drug side effects by comparative pharmacology.通过比较药理学预测药物副作用。
Expert Opin Drug Metab Toxicol. 2010 Oct;6(10):1253-63. doi: 10.1517/17425255.2010.509343.
3
Using quantitative systems pharmacology for novel drug discovery.运用定量系统药理学进行新药研发。
Expert Opin Drug Discov. 2015 Dec;10(12):1315-31. doi: 10.1517/17460441.2015.1082543. Epub 2015 Aug 25.
7
In vivo potency revisited - Keep the target in sight.重新审视体内效力——保持目标在视线范围内。
Pharmacol Ther. 2018 Apr;184:177-188. doi: 10.1016/j.pharmthera.2017.10.011. Epub 2017 Oct 10.
10
Ligandomics: a paradigm shift in biological drug discovery.配体组学:生物药物发现的范式转变。
Drug Discov Today. 2018 Mar;23(3):636-643. doi: 10.1016/j.drudis.2018.01.013. Epub 2018 Jan 8.

引用本文的文献

本文引用的文献

1
Trends in clinical success rates and therapeutic focus.临床成功率及治疗重点的趋势
Nat Rev Drug Discov. 2019 Jul;18(7):495-496. doi: 10.1038/d41573-019-00074-z.
6
The Elements of Translational Chemical Biology.转化化学生物学元素。
Cell Chem Biol. 2018 Feb 15;25(2):128-134. doi: 10.1016/j.chembiol.2017.11.003. Epub 2017 Dec 7.
7
HMDB 4.0: the human metabolome database for 2018.HMDB 4.0:2018 年人类代谢组数据库。
Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617. doi: 10.1093/nar/gkx1089.
9
The BRENDA enzyme information system-From a database to an expert system.BRENDA 酶信息系统——从数据库到专家系统。
J Biotechnol. 2017 Nov 10;261:194-206. doi: 10.1016/j.jbiotec.2017.04.020. Epub 2017 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验