Suppr超能文献

视觉统计学习究竟学习了什么?贝叶斯建模的见解。

What exactly is learned in visual statistical learning? Insights from Bayesian modeling.

机构信息

Haskins Laboratories, New Haven, CT, USA; The Hebrew University of Jerusalem, Israel.

The Hebrew University of Jerusalem, Israel.

出版信息

Cognition. 2019 Nov;192:104002. doi: 10.1016/j.cognition.2019.06.014. Epub 2019 Jun 19.

Abstract

It is well documented that humans can extract patterns from continuous input through Statistical Learning (SL) mechanisms. The exact computations underlying this ability, however, remain unclear. One outstanding controversy is whether learners extract global clusters from the continuous input, or whether they are tuned to local co-occurrences of pairs of elements. Here we adopt a novel framework to address this issue, applying a generative latent-mixture Bayesian model to data tracking SL as it unfolds online using a self-paced learning paradigm. This framework not only speaks to whether SL proceeds through computations of global patterns versus local co-occurrences, but also reveals the extent to which specific individuals employ these computations. Our results provide evidence for inter-individual mixture, with different reliance on the two types of computations across individuals. We discuss the implications of these findings for understanding the nature of SL and individual-differences in this ability.

摘要

大量文献证明,人类可以通过统计学习(SL)机制从连续的输入中提取模式。然而,这种能力的确切计算方法仍不清楚。一个悬而未决的争议是,学习者是从连续的输入中提取全局聚类,还是针对元素对的局部共现进行调整。在这里,我们采用一种新的框架来解决这个问题,应用产生潜在混合贝叶斯模型来跟踪在线学习时的 SL,使用自定步速学习范式。这个框架不仅探讨了 SL 是通过全局模式计算还是局部共现计算来进行,还揭示了特定个体在多大程度上使用这些计算。我们的结果提供了个体间混合的证据,不同个体对这两种计算的依赖程度不同。我们讨论了这些发现对理解 SL 的本质和个体在这种能力上的差异的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验