Suppr超能文献

统计模式束的增量隐式学习

Incremental implicit learning of bundles of statistical patterns.

作者信息

Qian Ting, Jaeger T Florian, Aslin Richard N

机构信息

Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, United States.

Department of Brain and Cognitive Sciences, University of Rochester, United States; Department of Computer Science, University of Rochester, United States; Department of Linguistics, University of Rochester, United States.

出版信息

Cognition. 2016 Dec;157:156-173. doi: 10.1016/j.cognition.2016.09.002. Epub 2016 Sep 15.

Abstract

Forming an accurate representation of a task environment often takes place incrementally as the information relevant to learning the representation only unfolds over time. This incremental nature of learning poses an important problem: it is usually unclear whether a sequence of stimuli consists of only a single pattern, or multiple patterns that are spliced together. In the former case, the learner can directly use each observed stimulus to continuously revise its representation of the task environment. In the latter case, however, the learner must first parse the sequence of stimuli into different bundles, so as to not conflate the multiple patterns. We created a video-game statistical learning paradigm and investigated (1) whether learners without prior knowledge of the existence of multiple "stimulus bundles" - subsequences of stimuli that define locally coherent statistical patterns - could detect their presence in the input and (2) whether learners are capable of constructing a rich representation that encodes the various statistical patterns associated with bundles. By comparing human learning behavior to the predictions of three computational models, we find evidence that learners can handle both tasks successfully. In addition, we discuss the underlying reasons for why the learning of stimulus bundles occurs even when such behavior may seem irrational.

摘要

形成任务环境的准确表征通常是渐进的,因为与学习该表征相关的信息只会随着时间推移而逐渐显现。学习的这种渐进性带来了一个重要问题:通常不清楚一系列刺激是仅由单一模式组成,还是由拼接在一起的多个模式组成。在前一种情况下,学习者可以直接利用每个观察到的刺激来不断修正其对任务环境的表征。然而,在后一种情况下,学习者必须首先将刺激序列解析为不同的组块,以免混淆多个模式。我们创建了一个电子游戏统计学习范式,并研究了:(1)对于事先不知道存在多个“刺激组块”(即定义局部连贯统计模式的刺激子序列)的学习者,他们能否在输入中检测到这些组块的存在;(2)学习者是否能够构建一个丰富的表征,对与组块相关的各种统计模式进行编码。通过将人类学习行为与三种计算模型的预测进行比较,我们发现有证据表明学习者能够成功完成这两项任务。此外,我们还讨论了即使这种行为看似不合理时,刺激组块学习仍会发生的潜在原因。

相似文献

1
Incremental implicit learning of bundles of statistical patterns.统计模式束的增量隐式学习
Cognition. 2016 Dec;157:156-173. doi: 10.1016/j.cognition.2016.09.002. Epub 2016 Sep 15.
3
6
Implicit learning of sequences of tasks.任务序列的内隐学习。
J Exp Psychol Learn Mem Cogn. 2001 Jul;27(4):967-83.
8
Implicit and explicit memory for visual patterns.视觉模式的内隐记忆和外显记忆。
J Exp Psychol Learn Mem Cogn. 1990 Jan;16(1):127-37. doi: 10.1037//0278-7393.16.1.127.

引用本文的文献

8
Incidental covariation learning leading to strategy change.偶然协变学习导致策略改变。
PLoS One. 2019 Jan 24;14(1):e0210597. doi: 10.1371/journal.pone.0210597. eCollection 2019.
10
Individual differences in learning social and nonsocial network structures.学习社会和非社会网络结构中的个体差异。
J Exp Psychol Learn Mem Cogn. 2019 Feb;45(2):253-271. doi: 10.1037/xlm0000580. Epub 2018 Jul 19.

本文引用的文献

6
8
The perception of probability.概率感知。
Psychol Rev. 2014 Jan;121(1):96-123. doi: 10.1037/a0035232.
9
Rapid Expectation Adaptation during Syntactic Comprehension.快速的预期适应在句法理解中。
PLoS One. 2013 Oct 30;8(10):e77661. doi: 10.1371/journal.pone.0077661. eCollection 2013.
10
Context-dependent decision-making: a simple Bayesian model.语境相关决策:一个简单的贝叶斯模型。
J R Soc Interface. 2013 Feb 20;10(82):20130069. doi: 10.1098/rsif.2013.0069. Print 2013 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验