Suppr超能文献

将全球神经元工作空间纳入预测加工框架:一个工作假说。

Integrating the global neuronal workspace into the framework of predictive processing: Towards a working hypothesis.

机构信息

School of Psychology, University of Sydney, NSW, Australia.

出版信息

Conscious Cogn. 2019 Aug;73:102763. doi: 10.1016/j.concog.2019.102763. Epub 2019 Jun 19.

Abstract

Hohwy (2013) proposed an account of conscious access that integrates the global neuronal workspace (GNW) into the framework of predictive processing, a view that I term the predictive global neuronal workspace (PGNW). Whilst promising, the PGNW is theoretically underdeveloped and empirically underexplored. The aim of this article is to outline the empirical predictions that distinguish the PGNW from other workspace models. I do so by (i) placing the PGNW in close contact with experimental work and cashing out a set of predictions that distinguish it from the standard formulation of the GNW, (ii) exploring the evidence for the first of these predictions in the context of bistable perception and the conscious processing of auditory regularities, and (iii), contrasting the PGNW with Chanes and Barrett (2016) limbic workspace. Combined, these arguments show that the PGNW is both testable and supported by current evidence.

摘要

霍维(2013)提出了一种意识通达的解释,将全局神经元工作空间(GNW)整合到预测加工的框架中,我将这种观点称为预测全局神经元工作空间(PGNW)。虽然很有前景,但 PGNW 在理论上还不够发达,在经验上也没有得到充分探索。本文的目的是概述区分 PGNW 和其他工作空间模型的经验预测。我通过以下方式实现这一目标:(i)将 PGNW 与实验工作紧密联系起来,并得出一组预测结果,将其与 GNW 的标准公式区分开来;(ii)在双稳态知觉和听觉规律的意识加工背景下,探索这些预测结果中的第一个的证据;(iii)将 PGNW 与钱恩斯和巴雷特(2016)的边缘工作空间进行对比。综上所述,这些观点表明,PGNW 既具有可测试性,也得到了现有证据的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验