Suppr超能文献

预测性全球神经元工作空间:视觉意识的形式主动推理模型。

The predictive global neuronal workspace: A formal active inference model of visual consciousness.

机构信息

School of Psychology, University of Sydney, NSW, Australia.

Laureate Institute for Brain Research, Tulsa, OK, USA.

出版信息

Prog Neurobiol. 2021 Apr;199:101918. doi: 10.1016/j.pneurobio.2020.101918. Epub 2020 Oct 8.

Abstract

The global neuronal workspace (GNW) model has inspired over two decades of hypothesis-driven research on the neural basis of consciousness. However, recent studies have reported findings that are at odds with empirical predictions of the model. Further, the macro-anatomical focus of current GNW research has limited the specificity of predictions afforded by the model. In this paper we present a neurocomputational model - based on Active Inference - that captures central architectural elements of the GNW and is able to address these limitations. The resulting 'predictive global workspace' casts neuronal dynamics as approximating Bayesian inference, allowing precise, testable predictions at both the behavioural and neural levels of description. We report simulations demonstrating the model's ability to reproduce: 1) the electrophysiological and behavioural results observed in previous studies of inattentional blindness; and 2) the previously introduced four-way taxonomy predicted by the GNW, which describes the relationship between consciousness, attention, and sensory signal strength. We then illustrate how our model can reconcile/explain (apparently) conflicting findings, extend the GNW taxonomy to include the influence of prior expectations, and inspire novel paradigms to test associated behavioural and neural predictions.

摘要

全球神经元工作空间 (GNW) 模型激发了超过二十年的、针对意识神经基础的假设驱动研究。然而,最近的研究报告发现了与该模型的经验预测相矛盾的结果。此外,当前 GNW 研究的宏观解剖焦点限制了该模型提供的预测的特异性。在本文中,我们提出了一个基于主动推理的神经计算模型,该模型捕获了 GNW 的核心架构元素,并能够解决这些限制。由此产生的“预测性全局工作空间”将神经元动力学表示为贝叶斯推理的近似,从而允许在行为和神经描述层面进行精确、可测试的预测。我们报告了模拟,展示了该模型能够重现:1)在先前的不注意盲研究中观察到的电生理和行为结果;以及 2)GNW 预测的先前引入的四向分类法,该分类法描述了意识、注意力和感觉信号强度之间的关系。然后,我们说明了我们的模型如何能够调和/解释(看似)相互矛盾的发现,将 GNW 分类法扩展到包括先前期望的影响,并激发新的范式来测试相关的行为和神经预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验